首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In intestinal inflammation, inflammatory cells infiltrate the submucosa and are found juxtaposed to intestinal epithelial cell (IEC) basolateral membranes and may directly regulate IEC function. In this study we determined whether macrophage (M), P388D1 and J774A.1, are coupled by gap junctions to IEC lines, Mode-K and IEC6. Using flow cytometric analysis, we show bi-directional transfer of the fluorescent dye, calcein (700 Da) between IEC and M resulting in a 3.5–20-fold increase in recipient cell fluorescence. Homocellular and heterocellular dye transfer between M and/or IEC was detected in cocultures of P388D1, J774A.1, Mode-K, IEC6 and CMT93. However, transfer between P388D1 and Mode-K was asymmetrical in that transfer from P388D1 to Mode-K was always more efficient than transfer from Mode-K to P388D1. Dye transfer was strictly dependent on IEC-M? adhesion which in turn was dependent on the polarity of IEC adhesion molecule expression. Both calcein dye transfer and adhesion were inhibited by the addition of heptanol to cocultures. Furthermore we demonstrate both IEC homocellular, and M?-IEC heterocellular propagation of calcium waves in response to mechanical stimulation, typical of gap junctional communication. Finally, areas of close membrane apposition were seen in electron micrographs of IEC-M? cocultures, suggestive of gap junction formation. These data indicate that IEC and MM? are coupled by gap junctions suggesting that gap junctional communication may provide a means by which inflammatory cells might regulate IEC function.  相似文献   

2.
The human IgA FcR (FcalphaRI; CD89) mediates a variety of immune system functions including degranulation, endocytosis, phagocytosis, cytokine synthesis, and cytokine release. We have identified a common, nonsynonymous, single nucleotide polymorphism (SNP) in the coding region of CD89 (844A-->G) (rs16986050), which changes codon 248 from AGC (Ser(248)) to GGC (Gly(248)) in the cytoplasmic domain of the receptor. The two different alleles demonstrate significantly different FcalphaRI-mediated intracellular calcium mobilization and degranulation in rat basophilic leukemia cells and cytokine production (IL-6 and TNF-alpha) in murine macrophage P388D1 cells. In the absence of FcR gamma-chain association in P388D1 cells, the Ser(248)-FcalphaRI allele does not mediate cytokine production, but the Gly(248)-FcalphaRI allele retains the capacity to mediate a robust production of proinflammatory cytokine. This allele-dependent difference is also seen with FcalphaRI-mediated IL-6 cytokine release by human neutrophils ex vivo. These findings and the enrichment of the proinflammatory Gly(248)-FcalphaRI allele in systemic lupus erythematosus populations in two ethnic groups compared with their respective non-systemic lupus erythematosus controls suggest that FcalphaRI (CD89) alpha-chain alleles may affect receptor-mediated signaling and play an important role in the modulation of immune responses in inflammatory diseases.  相似文献   

3.
Increased epithelial cell expression of the cyclooxgenase-2 (COX-2) enzyme is a characteristic event of both inflammatory bowel disease and colon cancer. We here report the novel findings that collagen I-induced de novo synthesis of COX-2 in intestinal epithelial cells is inhibited by pertussis toxin (PTX) and by an inhibitory peptide selective for the heterotrimeric Gαi3-protein. These findings could be explained by a regulatory involvement of the G-protein-dependent integrin-associated protein CD47. In support of this notion, we observed a collagen I-induced association between CD47 and α2 integrins. This association was reduced by a blocking anti-CD47 antibody but not by PTX or a control anti-β2 antibody. Furthermore, a blocking antibody against CD47, dominant negative CD47 or specific siRNA knock down of CD47, significantly reduced collagen I-induced COX-2 expression. COX-2 has previously been shown to regulate intestinal epithelial cell adhesion and migration. Morphological analysis of intestinal cells adhering to collagen I revealed a co-localisation of CD47 and α2 integrins to non-apoptotic membrane blebs enriched in Rho A and F-actin. The blocking CD47 antibody, PTX and a selective COX-2 inhibitor, dramatically inhibited the formation of these blebs. In accordance, migration of these cells on a collagen I-coated surface or through a collagen I gel were significantly reduced by the CD47 blocking antibody, siRNA knock down of CD47 and the COX-2 inhibitor NS-398. In conclusion, we present novel data that identifies the G-protein-dependent CD47 protein as a key regulator of collagen I-induced COX-2 expression and a promoter of intestinal epithelial cell migration.  相似文献   

4.
Platelets have been implicated in the pathogenesis of different diseases of the vascular system, including atherosclerosis, sepsis, and ischemia-reperfusion injury; however, relatively little is known about the factors that regulate the interactions between circulating platelets and the vessel wall. The objective of this study was to define the contribution of superoxide to LPS-induced platelet-endothelial cell (P/E) adhesion in murine intestinal venules. The adhesion of rhodamine-6G-labeled murine platelets was monitored by intravital fluorescence microscopy. Four hours after LPS administration in control [wild-type (WT)] mice, an approximately 10-fold increase in P/E adhesion was detected. This response did not result from LPS-induced platelet activation. The LPS-induced P/E adhesion was greatly attenuated in NAD(P)H oxidase-deficient mice and in WT mice rendered neutropenic with anti-neutrophil serum, whereas the response was unchanged in WT mice receiving a CD18 blocking MAb or in CD18-deficient mice. A chimeric form of MnSOD that exhibits the binding properties of extracellular SOD also attenuated the LPS-induced response in WT mice. These findings indicate that neutrophil-derived superoxide plays a major role in the modulation of endotoxin-induced P/E adhesion.  相似文献   

5.
Leishmania donovani-infected splenic macrophages and P388D1 (P388D1(I)) failed to activate T cells in response to low dose of exogenous peptide. The membrane fluidity of P388D1(I) was greater than that of the normal counterpart P388D1(N), but could be reduced either by exposing the cell below phase transition point or by loading cholesterol into membrane (L-P388D1(I)), and this was associated with enhanced Ag-presenting ability of P388D1(I). Presentation of endogenous leishmanial Ag, kinetoplastid membrane protein-11, was also defective, but could be corrected by loading cholesterol into membrane. Because membrane rafts are important for Ag presentation at a low peptide dose, raft architecture of P388D1(I) was studied using raft (CD48 and cholera toxin-B) and non-raft (CD71) markers in terms of their colocalization with I-A(d). Binding of anti-CD48 mAb and cholera toxin B subunit decreased significantly in P388D1(I), and consequently, colocalization with I-A(d) was not seen, but this could be restored in L-P388D1(I). Conversely, colocalization between I-A(d) and CD71 remained unaffected regardless of the presence or the absence of intracellular parasites. P388D1(N) and L-P388D1(I), but not P388D1(I), formed peptide-dependent synapse with T cells quite efficiently and this was found to be corroborated with both intracellular Ca2+ mobilization in T cells and IL-2 production. This indicated that intracellular parasites disrupt the membrane rafts, possibly by increasing the membrane fluidity, which could be corrected by making the membrane rigid. This may be a strategy that intracellular L. donovani adopts to evade host immune system.  相似文献   

6.
The intestinal epithelium is comprised of a monolayer of intestinal epithelial cells (IEC), which provide, among other functions, a physical barrier between the high Ag content of the intestinal lumen and the sterile environment beyond the epithelium. IEC express a nonclassical MHC class I molecule known as the thymus leukemia (TL) Ag. TL is known to interact with CD8αα-expressing cells, which are abundant in the intestinal intraepithelial lymphocyte compartment. In this report, we provide evidence indicating that expression of TL by IEC modulates the cytokine profile of CD4(+) T cells favoring IL-17 production. We show in an adoptive transfer model of colitis that donor-derived cells become more pathogenic when TL is expressed on IEC in recipient animals. Moreover, TL(+)IEC promote development of IL-17-mediated responses capable of protecting mice from Citrobacter rodentium infection. We also show that modulation of IL-17-mediated responses by TL(+)IEC is controlled by the expression of CD8α on CD4(+) T cells. Overall, our results provide evidence for an important interaction between IEC and CD4(+) T cells via TL, which modulates mucosal immune responses.  相似文献   

7.
The mixed-lymphocyte reaction reactivity of normal and tumor-bearing host (TBH) T-cell subsets was examined in response to normal and TBH macrophage (Mø) supernatants. Both inhibiting and enhancing activities were identified in normal and TBH Mø supernatants. The present data suggest that TBH Mø supernatants contained more inhibitory activity than normal host Mø supernatants and that enhancing activity of Mø supernatants was restricted to the Lyt 2,3+ population of cells. TBH Lyt 2,3+ cells were more responsive to the enhancing molecule(s) than their normal counterparts. These data were consistent with studies which implicate Mø as being partially responsible for the immune dysfunction seen in TBH, and extends previous findings on the ability of Mø to regulate the immune response in an attempt to achieve homeostasis.  相似文献   

8.
F Xie  S Sun  A Xu  S Zheng  M Xue  P Wu  J H Zeng  L Bai 《Cell death & disease》2014,5(1):e1006
Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn''s disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor that contributes to IBD progression. Targeting AOPP-induced cellular mechanisms might emerge as a promising therapeutic option for patients with IBD.  相似文献   

9.
10.
Intestinal epithelial cells (IEC) are located at the strategic interface between the external environment and the most extensive lymphoid compartment in the body. Besides their central role in the absorption of nutrients, they also provide sample information to the immune system on soluble or particulate antigens present in the intestinal lumen. Like professional antigen-presenting cells, IEC have recently been shown to secrete 30- to 90-nm diameter vesicles named exosomes from their apical and basolateral surfaces. These vesicles carry molecules that are implicated in adhesion and antigen presentation, such as major histocompatibility complex (MHC) class I molecules, MHC class II molecules, CD63, CD26/dipeptidyl-peptidase IV, tetraspan proteins, and A33 antigen. IEC exosomes therefore, constitute a link by which IEC may influence antigen presentation in the mucosal or systemic immune system independent of direct cellular contact with effector cells.  相似文献   

11.
Single epithelial-derived tumor cells have been shown to induce apical and basolateral (AB) polarity by expression of polarization-related proteins. However, physiological cues and molecular mechanisms for AB polarization of single normal epithelial cells are unclear. When intestinal epithelial cells 6 (IEC6 cells) were seeded on basement membrane proteins (Matrigel), single cells formed an F-actin cap on the upper cell surface, where apical markers accumulated, and a basolateral marker was localized to the rest of the cell surface region, in a Wnt5a signaling–dependent manner. However, these phenotypes were not induced by type I collagen. Rac1 activity in the noncap region was higher than that in the cap region, whereas Rho activity increased toward the cap region. Wnt5a signaling activated and inhibited Rac1 and RhoA, respectively, independently through Tiam1 and p190RhoGAP-A, which formed a tertiary complex with Dishevelled. Furthermore, Wnt5a signaling through Rac1 and RhoA was required for cystogenesis of IEC6 cells. These results suggest that Wnt5a promotes the AB polarization of IEC6 cells through regulation of Rac and Rho activities in a manner dependent on adhesion to specific extracellular matrix proteins.  相似文献   

12.
The P2X7R (P2X7 receptor) is an ATP‐gated cation channel expressed in normal cells that participates in both cell proliferation and apoptosis. Here, we have confirmed P2X7R expression on murine P388D1 lymphoid neoplasm cells. In addition, ATP‐stimulated P2X7R expression was found to trigger increased intracellular calcium flux. Furthermore, silencing with short hairpin RNA and blocking with P2X7R antibody significantly reduced the metastasis of P388D1 cells to lymph nodes. These results indicate that inhibition of the expression and function of P2X7R attenuates the metastatic ability of murine lymphoid neoplasm cell line P388D1, which represents a new potential target for anti‐metastatic therapy.  相似文献   

13.

Background

CD40 is a receptor expressed on a wide range of cells such as leukocytes and endothelial cells (EC). As a member of the tumor necrosis factor (TNF) superfamily the activation of CD40 by CD40-ligand (CD40L) plays a crucial role for the development and progression of a variety of inflammatory processes including atherosclerosis. The aim of the present study was to investigate the effect of CD40/CD40L interaction on leukocyte adhesion to the endothelium and on endothelial cell migration.

Methods and results

Human umbilical vein endothelial cells (HUVEC) were stimulated with either stable transfectants of mouse myeloma cells expressing the CD40L or wild type cells (4 h). Subsequently adhesion of leukocytes expressing Sialyl Lewis X, the counterpart for E-selectin (HL60 cells), was measured under shear stress (2–2.6 dyne/cm2) using a flow chamber adhesion assay. Stimulation of CD40 led to a significant increase of E-selectin dependent adhesion of leukocytes to the endothelium. Incubation of cells with either the CD40L blocking antibody TRAP-1 or the E-selectin blocking antibody BBA2 during CD40 stimulation completely abolished adhesion of leukocytes to HUVEC. Similar results were found in human cardiac microvasculature endothelial cells (HCMEC). In contrast stimulation of CD40 had no effect on adhesion of l-selectin expressing NALM6-L cells. Furthermore, CD40/CD40L interaction abrogated VEGF-induced migration of HUVEC compared to non-stimulated controls. In comparison experiments, stimulation of endothelial cells with VEGF led to a significant phosphorylation of ERK1/2, Akt, and eNOS. Stimulation of endothelial CD40 had no effect on VEGF-induced phosphorylation of ERK1/2. However, VEGF-induced activation of Akt and eNOS was reduced to baseline levels when endothelial CD40 was stimulated.

Conclusion

CD40/CD40L interaction induces E-selectin dependent adhesion of leukocytes to human endothelial cells and reduces endothelial cell migration by inhibiting the Akt/eNOS signaling pathway.  相似文献   

14.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

15.

Objectives

Although haematopoietic stem cells (HSCs) migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i) the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii) whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii) whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.

Methods

Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR) injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.

Results

IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.

Conclusion

This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and further demonstrate that adhesion instigated by injury alone is not sufficient for mediating anti-inflammatory effects. Enhancing local HSC presence may therefore be essential to realising their clinical potential.  相似文献   

16.
Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn's lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures.  相似文献   

17.
为探索铜绿假单胞菌粘附肠上皮细胞后,细胞骨架特性的变化规律及可能的机制。采用微管吸吮实验技术并结合细胞ELISA、图像分析等方法研究体外绿脓杆菌粘附肠上皮细胞后细胞骨架的变化。结果显示细菌粘附后1h肠上皮细胞活力即开始下降,3h后IEC面积明显减小,而细胞周长无明显变化;胞内骨架蛋白减少,且随孵育时间的延长愈趋明显;细胞弹性系数K1、K2在粘附后3h明显降低,同时伴有粘性系数μ也明显下降。以上结果表明绿脓杆菌粘附肠上皮细胞后,细胞骨架成分改变,细胞骨架功能受损害,最终导致细胞损伤。  相似文献   

18.
19.
The loss of intestinal epithelial cell (IEC) function is a critical component in the initiation and perpetuation of chronic intestinal inflammation in the genetically susceptible host. We applied proteome analysis (PA) to characterize changes in the protein expression profile of primary IEC from patients with Crohn's disease (CD) and ulcerative colitis (UC). Surgical specimens from 18 patients with active CD (N = 6), UC (N = 6), and colonic cancer (N = 6) were used to purify primary IEC from ileal and colonic tissues. Changes in protein expression were identified using 2D-gel electrophoreses (2D SDS-PAGE) and peptide mass fingerprinting via MALDI-TOF mass spectrometry (MS) as well as Western blot analysis. PA of primary IEC from inflamed ileal tissue of CD patients and colonic tissue of UC patients identified 21 protein spots with at least 2-fold changes in steady-state expression levels compared to the noninflamed tissue of control patients. Statistical significance was achieved for 9 proteins including the Rho-GDP dissociation inhibitor alpha that was up-regulated in CD and UC patients. Additionally, 40 proteins with significantly altered expression levels were identified in IEC from inflamed compared to noninflamed tissue regions of single UC (N = 2) patients. The most significant change was detected for programmed cell death protein 8 (7.4-fold increase) and annexin 2A (7.7-fold increase). PA in primary IEC from IBD patients revealed significant expression changes of proteins that are associated with signal transduction, stress response as well as energy metabolism. The induction of Rho GDI alpha expression may be associated with the destruction of IEC homeostasis under condition of chronic intestinal inflammation.  相似文献   

20.
Neurons of enteric nervous system (ENS) regulate intestinal epithelial cells (IEC) functions but whether IEC can impact upon the neurochemical coding and survival of enteric neurons remain unknown. Neuro-epithelial interactions were studied using a coculture model composed of IEC lines and primary culture of rat ENS or human neuroblastoma cells (SH-SY5Y). Neurochemical coding of enteric neurons was analysed by immunohistochemistry and quantitative PCR. Neuroprotective effects of IEC were tested by measuring neuron specific enolase (NSE) release or cell permeability to 7-amino-actinomycin D (7-AAD). Following coculture with IEC, the percentage of VIP-immunoreactive (IR) neurons but not NOS-IR and VIP mRNA expression were significantly increased. IEC significantly reduced dopamine-induced NSE release and 7-AAD permeability in culture of ENS and SH-SY5Y, respectively. Finally, we showed that NGF had neuroprotective effects but reduced VIP expression in enteric neurons. In conclusion, our study identified a novel role for IEC in the regulation of enteric neuronal properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号