首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the relationship between cell binding of phorbol 12,13-dibutyrate (PDBu) and induction of differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was examined. Binding of [3H]PDBu increased within 12 h of 1,25-(OH)2D3 treatment, and a 60-130% increase in [3H]PDBu receptor levels was observed within 24 h. By 48 h, however, [3H]PDBu binding was not different from control. Scatchard analysis of [3H]PDBu binding showed no statistical differences in Kd value (Kd approximately equal to 30 nM) between 1,25-(OH)2D3-treated and control cells 22 h post-treatment; however, a 2-fold increase in Bmax was observed in treated (338 +/- 24 pmol/10(9) cells) compared to control cultures (170 +/- 14 pmol/10(9) cells). Stimulation of [3H]PDBu binding was dependent on 1,25-(OH)2D3 concentrations over a range of 1-100 nM. Homogenates from 1,25-(OH)2D3-treated HL-60 cells also demonstrated an increase (70%) in [3H]PDBu binding to the Ca2+/phospholipid-dependent enzyme protein kinase C as assessed by incubation of cell homogenates with [3H]PDBu in the presence of saturating phosphatidylserine and calcium concentrations. This suggests that the increase in [3H]PDBu binding cannot be entirely explained by modulation of the latter two agents. Cycloheximide (5 microM), an inhibitor of protein synthesis, ablated the 1,25-(OH)2D3-stimulated increase in [3H]PDBu binding to intact HL-60 cells. These data demonstrate that an increase in [3H]PDBu binding occurs early in the course of 1,25-(OH)2D3-induced differentiation, results from an increased number of [3H]PDBu-binding site, and is dependent on protein synthesis.  相似文献   

2.
MAP kinase activation in cells exposed to a 60 Hz electromagnetic field   总被引:3,自引:0,他引:3  
This research provides evidence that mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) is activated in HL-60 human leukemia cells, MCF-7 human breast cancer cells, and rat fibroblast 3Y1 cells exposed to a 60 Hertz (Hz), 1 Gauss (G) electromagnetic field (EMF). The effects of EMF exposure were compared to those observed using 12-O-tetradecanoylphorbal-13-acetate (TPA) treatment. The level of MAPK activation in cells exposed to EMF was approximately equivalent to that in cells treated with 0.1-0.5 ng/ml of TPA. A role for protein kinase C (PKC) in the process leading to MAPK activation in EMF exposed cells is also suggested by the results. MAPK activation is negated by an inhibitor to PKCalpha, but not PKCdelta inhibitors, in cells subjected to EMF exposure or TPA treatment. Thus, similarities between the effects of EMF exposure and TPA treatment are supported by this investigation. This provides a possible method for revealing other participants in EMF-cell interaction, since the TPA induction pathway is well documented.  相似文献   

3.
In an HL-60 cell subline (PR-17) which was greater than 100-fold resistant to the differentiating and cytostatic activities of phorbol 12-myristate 13-acetate (PMA), the protein kinase C phenotype was found to be nearly identical to that of wild-type HL-60 cells. A measurable decrease (30%) in the specific activities of crude preparations of PR-17 cell protein kinase C was observed when the enzyme was measured with histone as the phosphate acceptor substrate, but other aspects of the protein kinase C phenotype (intracellular concentrations and binding affinities of phorbol diester receptors, translocation of activated enzyme from cytosolic to particulate subcellular fractions, relative expression of the alpha and beta isozyme proteins) were equivalent in both PMA-resistant PR-17 cells and in wild-type HL-60 cells. Direct analysis of the behavior of the alpha and beta isozymes after the exposure of each cell type to 100 nM PMA for 12 h revealed that the activities and intracellular concentrations of both isozymes were downregulated to an equivalent extent in both wild-type and PMA-resistant cells. These results suggest that the cellular basis for the resistance to the effects of PMA was present "down-stream" from the activation and down-regulation of protein kinase C and was perhaps a nuclear component. Among the genes which were likely to be differentially regulated when each of the two cell lines were treated with PMA were those for the protein kinase C isozymes themselves. In wild-type HL-60 cells, the intracellular concentrations of type HL-60 cells, the intracellular concentrations of mRNA for each of the beta isozymes were increased (up to 5-fold) 48 h after the initiation of PMA treatment; further studies indicate that an activator of protein kinase C could influence the expression of HL-60 cell protein kinase C genes in an isozyme-specific manner. Comparable PMA-induced alterations in mRNA levels were not observed in PMA-resistant cells, even under conditions of significant activation and subsequent down-regulation of protein kinase C protein. Taken together, these data suggest that activation and down-regulation of the isozymes of protein kinase C may not represent absolute determinants of the PMA-induced differentiation of HL-60 cells, but that specific alterations in the levels of the mRNA for the beta isozymes of protein kinase C, or of other genes which may be regulated by the activated kinase isozymes, are important to the induction of leukemia cell differentiation by PMA.  相似文献   

4.
The signaling mechanisms leading to phorbol ester myristate (PMA)-induced differentiation of HL-60 cells to the macrophagelike phenotype were investigated by using different protein kinase inhibitors. The protein kinase C inhibitor Ro 31-8220 specifically blocks PMA-induced differentiation, activation of the p42/44ERK- and p38RK-MAP kinase cascades and Hsp27-phosphorylation in HL-60 cells. Because Ro 31-8220 does not inhibit activation of the MAP kinase cascades by protein kinase C (PKC)-independent signals such as epidermal growth factor (EGF), heat shock, or anisomycin in these cells, only PMA-induced activation of the MAP kinases can be downstream of PKC. The MEK1 inhibitor PD 098059 and the p38RK inhibitor SB 203580 also were used to analyze whether the PMA-induced PKC-dependent activation of MAP kinases is involved in the differentiation process. Under certain conditions, PD 098059 can completely block the PMA-induced activation of the p42ERK as monitored by imunoprecipitation kinase assay by using the substrate myelin basic protein. SB 203580 specifically inhibits activation of p38RK as judged by MAPKAP kinase 2 activity against the substrate Hsp27 and also blocks Hsp27 phosphorylation in the cells. In contrast, neither PD 098059 nor SB 203580 nor both inhibitors together prevent PMA-induced differentiation of the HL-60 cells to the macrophagelike phenotype. The results suggest the existence of a diversification of PMA-induced signaling in HL-60 cells downstream of PKC, leading to activation of MAP kinases that are not essential for differentiation and to phosphorylation of other, so far unidentified, targets responsible for differentiation. J. Cell. Physiol. 173:310–318, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
HL-60 cells are very sensitive to the cytotoxic action of ether lipids. Several hypotheses have been proposed to explain this cytotoxicity. We investigated the influence of the alkylphospholipid ET-18-OCH3 on the activity of protein kinase C. HL-60 cells were incubated with ET-18-OCH3 at a concentration of 20 μg/ml for 4 h. After the incubation the membrane fraction of the HL-60 cells was isolated and the activity of protein kinase C was determined while it was still associated with the membrane, using the synthetic peptide substrate [Ser25]-protein kinase C (19–31) as a protein kinase C specific substrate. The activity of the membrane-bound protein kinase C was increased in HL-60 cells treated with ET-18-OCH3 compared to untreated HL-60 cells. The increase in protein kinase C activity was not a consequence of translocation and appeared to be additive to the effect of the phorbol ester 12-myristate 13-acetate. In contrast, solubilized protein kinase C from HL-60 cells could be inhibited or stimulated in vitro by ET-18-OCH3, dependent on the mode of addition of ET-18-OCH3 and phospholipids.  相似文献   

7.
The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma-derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12-O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha-phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become differentiated to organize into nongrowing tubes.  相似文献   

8.
9.
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low‐frequency electromagnetic field (ELF‐EMF)‐induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF‐EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF‐EMF‐induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady‐state activation curve was significantly shifted towards hyperpolarization by ELF‐EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF‐EMF. ELF‐EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK‐7 did not reduce the ELF‐EMF‐induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF‐EMF‐induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF‐EMF. In the presence of ruthenium red, a ryanodine‐sensitive receptor blocker, the MT‐induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF‐EMF exposure through Ca2+ influx‐induced Ca2+ release.  相似文献   

10.
H Sugiya  J F Obie    J W Putney  Jr 《The Biochemical journal》1988,253(2):459-466
In rat parotid acinar cells prelabelled with [3H]inositol, substance P (100 nM) induced the formation of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Ins(1,4,5)P3 reached a maximum 7 s after substance P stimulation, and thereafter decreased and reached a stable value at 60 s. When the cells were exposed to substance P for 10, 30, 60, or 300 s, washed, and re-exposed to this peptide, the formation of [3H]inositol trisphosphate (InsP3) was attenuated in a time-dependent manner. In the cells pretreated as described above, the number of [3H]substance-P-binding sites (Bmax) was also decreased. Possible role(s) of Ca2+ and protein kinase (protein kinase C) control mechanisms in regulating substance P responses were investigated. Desensitization of substance P-induced InsP3 was not affected by the Ca2+ ionophore ionomycin, nor was it dependent on Ca2+ mobilization. On the other hand, in the presence of 4 beta-phorbol 12,13-dibutyrate (PDBu) and 12-O-tetradecanoyl-4 beta-phorbol 13-acetate, known activators of protein kinase C, substance P-induced InsP3 formation was inhibited. However, PDBu had no effect on [3H]substance P binding, whether present during the assay or when cells were pretreated. The persistent desensitization of InsP3 formation induced by substance P was not affected by PDBu. These results suggest that the persistent desensitization of InsP3 formation induced by substance P is a homologous process involving down-regulation of the substance P receptor; the mechanism does not appear to involve, or to be affected by, the Ca2+ or protein kinase C signalling systems. Protein kinase C activation can, however, inhibit substance P-induced InsP3 formation, which may indicate the presence of a negative-feedback control on the substance P pathway.  相似文献   

11.
Treatment of human promyelocytic leukemia cells (HL-60 cells) with 12-O-tetradecanoylphorbol 13-acetate (TPA) results in terminal differentiation of the cells to macrophage-like cells. Treatment of the cells with TPA induced marked enhancement of the phosphorylation of 28- and 67-kDa proteins and a decrease in that of a 75-kDa protein. When the cells were treated with diacylglycerol, i.e. 50 micrograms/ml 1-oleoyl-2-acetylglycerol (OAG), similar changes in the phosphorylation of 28-, 67-, and 75-kDa proteins were likewise observed, indicating that OAG actually stimulates protein kinase C in intact HL-60 cells. OAG (1-100 micrograms/ml), which we used, activated partially purified mouse brain protein kinase C in a concentration-dependent manner. Treatment of HL-60 cells with 10 nM TPA for 48 h caused an increase by about 8-fold in cellular acid phosphatase activity. Although a significant increase in acid phosphatase activity was induced by OAG, the effect was scant compared to that of TPA (less than 7% that of TPA). After 48-h exposure to 10 nM TPA, about 95% of the HL-60 cells adhered to culture dishes. On the contrary, treatment of the cells either with OAG (2-100 micrograms/ml) or phospholipase C failed to induce HL-60 cell adhesion. Ca2+ ionophore A23187 failed to act synergistically with OAG. In addition, hourly or bi-hourly cumulative addition of OAG for 24 h also proved ineffective to induce HL-60 cell adhesion. Our present results do not imply that protein kinase C activation is nonessential for TPA-induced HL-60 cell differentiation, but do demonstrate that protein kinase C activation is not the sole event sufficient to induce HL-60 cell differentiation by means of this agent.  相似文献   

12.
13.
D B Luckie  K L Boyd  K Takeyasu 《FEBS letters》1991,290(1-2):231-234
HL-60 cells are very sensitive to the cytotoxic action of ether lipids. Several hypotheses have been proposed to explain this cytotoxicity. We investigated the influence of the alkylphospholipid ET-18-OCH3 on the activity of protein kinase C. HL-60 cells were incubated with ET-18-OCH3 at a concentration of 20 μg/ml for 4 h. After the incubation the membrane fraction of the HL-60 cells was isolated and the activity of protein kinase C was determined while it was still associated with the membrane, using the synthetic peptide substrate [Ser25]-protein kinase C (19–31) as a protein kinase C specific substrate. The activity of the membrane-bound protein kinase C was increased in HL-60 cells treated with ET-18-OCH3 compared to untreated HL-60 cells. The increase in protein kinase C activity was not a consequence of translocation and appeared to be additive to the effect of the phorbol ester 12-myristate 13-acetate. In contrast, solubilized protein kinase C from HL-60 cells could be inhibited or stimulated in vitro by ET-18-OCH3, dependent on the mode of addition of ET-18-OCH3 and phospholipids.  相似文献   

14.
15.
Phorbol dibutyrate (PDBu) binding to rat prostatic epithelial cells has been measured as an indirect determination of protein kinase C in this cell system. Analysis of [3H]PDBu binding using competitive displacement demonstrated a single class of PDBu receptors with a Kd=141 nM and a binding capacity of 4.8 pmol PDBu bound/mg cell protein. Raising cytosolic Ca2+ levels by redistribution of intracellular Ca2+ after cell treatment with carbachol or arachidonic acid (which also affects the bulk biophysical properties of the cell membrane) resulted in up-regulation of the available number of PDBu receptors. These results appear to be a consequence of PKC translocation from the cytosolic compartment to the plasma membrane after a cytosolic Ca2+ increase, confirming previous results in other cell systems.  相似文献   

16.
17.
In this report, we demonstrate that HL-60 nuclei isolated in calcium but not EGTA containing buffers specifically bind PE and express approximately 37,000 receptor sites/nucleus. Nuclear phorbol ester binding is lost by isolation in the absence of calcium, but can be repleted by the addition of partially purified protein kinase C and calcium. When HL-60 cells are treated with bryostatin 1, a compound which activates protein kinase C in a similar fashion to phorbol esters but does not induce differentiation of HL-60 cells, and nuclei are isolated in the presence of EGTA, these nuclei continue to bind phorbol esters. These experiments suggest that HL-60 nuclei bind PE in vitro, and that compounds that activate protein kinase C may increase nuclear binding of PE in situ.  相似文献   

18.
The effect of pulsed electromagnetic fields (PEMF) similar to those used in transcranial magnetic stimulation (TMS) on two tumour cell lines, the human promyelocytic leukaemia cell line (HL-60) and the rat pheochromocytoma cell line (PC12), was investigated. The two cell lines were exposed to non-homogeneous pulsed electromagnetic fields (about 0.25–4.5 T peak magnetic field strength; 1–8 exponential pulses, 0.25 Hz) at different positions on the coil (2×25 mm). After exposure with various intensities, various numbers of pulses and at different coil positions, cell viability and the intracellular cyclic AMP content were determined in the two cell lines. Additionally, in HL-60 cells the intracellular Hsp72 content and in PC12 cells the release of the neurotransmitters dopamine, noradrenaline and acetylcholine were measured after PEMF treatment. The results of these analyses do not hint at alterations in the cell viability or in the content of cAMP, Hsp72, dopamine, noradrenaline, and acetylcholine in the two tumour cell lines after PEMF exposure under various conditions.  相似文献   

19.
本文对佛波醇酶诱导人早幼粒白血病细胞系HL-60细胞分化为巨噬细胞样细胞对蛋白激酶c活力及其在亚细胞分布的变化进行了研究。蛋白激酶c活力在TPA处理1小时即明显降低,此低水平的酶活力持续整个实验时期。酶的亚细胞分布研究提示TPA处理细胞胞质组分酶活力剧烈降低,而颗粒组分存在一高盐浓度洗脱的酶活力峰。蛋白激酶c抑制剂三氟过(口了)嗪单独处理HL-60细胞导致胞质和颗粒组分酶活力升高,但并不诱导细胞分化;若与TPA合并处理细胞,酶活力又降低,此时细胞又分化为巨噬细胞样细胞。对上述结果的可能机理进行了讨论。  相似文献   

20.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号