首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dihydrotestosterone (DHT) attenuates cytokine-induced cyclooxygenase-2 (COX-2) in coronary vascular smooth muscle. Since hypoxia inducible factor-1α (HIF-1α) activation can lead to COX-2 production, this study determined the influence of DHT on HIF-1α and COX-2 following hypoxia or hypoxia with glucose deprivation (HGD) in the cerebral vasculature. COX-2 and HIF-1α levels were assessed via Western blot, and HIF-1α activation was indirectly measured via a DNA binding assay. Experiments were performed using cerebral arteries isolated from castrated male rats treated in vivo with placebo or DHT (18 days) followed by hypoxic exposure ex vivo (1% O(2)), cerebral arteries isolated from castrated male rats treated ex vivo with vehicle or DHT (10 or 100 nM; 18 h) and then exposed to hypoxia ex vivo (1% O(2)), or primary human brain vascular smooth muscle cells treated with DHT (10 nM; 6 h) or vehicle then exposed to hypoxia or HGD. Under normoxic conditions, DHT increased COX-2 (cells 51%; arteries ex vivo 31%; arteries in vivo 161%) but had no effect on HIF-1α. Following hypoxia or HGD, HIF-1α and COX-2 levels were increased; this response was blunted by DHT (cells HGD: -47% COX-2, -34% HIF-1α; cells hypoxia: -29% COX-2, -54% HIF-1α; arteries ex vivo: -37% COX-2; arteries in vivo: -35% COX-2) and not reversed by androgen receptor blockade. Hypoxia-induced HIF-1α DNA-binding was also attenuated by DHT (arteries ex vivo and in vivo: -55%). These results demonstrate that upregulation of COX-2 and HIF-1α in response to hypoxia is suppressed by DHT via an androgen receptor-independent mechanism.  相似文献   

2.
3.
Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A2, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A2 synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-κβ signaling pathway.  相似文献   

4.
5.
Cyclooxygenase (COX)-2 expression is increased in the kidney of rats made diabetic with streptozotocin and associated with enhanced release of prostaglandins stimulated by arachidonic acid (AA). Treatment of diabetic rats with nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase or with tempol to reduce superoxide prevented these changes, suggesting the possibility that peroxynitrite (ONOO) may be the stimulus for the induction of renal COX-2 in diabetes. Consequently, we tested the effects of an ONOO decomposition catalyst, 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron(III) (FeTMPyP), which was administered for 3-4 wk after the induction of diabetes. FeTMPyP treatment normalized the twofold increase in the expression of nitrotyrosine, a marker for ONOO formation, in the diabetic rat and prevented the increase in renal COX-2 expression without modifying the two- to threefold increases in renal release of prostaglandins PGE(2) and 6-ketoPGF(1α) in response to AA. FeTMPyP treatment of diabetic rats reduced the elevated creatinine clearance and urinary excretion of TNF-α and transforming growth factor (TGF)-β, suggesting a renoprotective effect. Double immunostaining of renal sections and immunoprecipitation of COX-2 and nitrotyrosine suggested nitration of COX-2 in diabetic rats. In cultured human umbilical vein endothelial cells (HUVECs) exposed to elevated glucose (450 mg/dl) or ONOO derived from 3-morpholinosydnonimine (SIN-1), expression of COX-2 was increased and was prevented when endothelial cells were treated with FeTMPyP. These results indicate that elevated glucose increases the formation of ONOO, which contributes to the induction of renal COX-2 in the diabetic rat.  相似文献   

6.
Ruan CH  So SP  Ruan KH 《Life sciences》2011,88(1-2):24-30
AimOur aim is to understand the molecular mechanisms of the selective nonsteroidal anti-inflammatory drugs (NSAID), cyclooxygenase-2 (COX-2) inhibitors', higher “priority” to reduce synthesis of the vascular protector, prostacyclin (PGI2), compared to that of nonselective NSAIDs.Main methodsCOX-1 or COX-2 was co-expressed with PGI2 synthase (PGIS) in COS-7 cells. The Km and initial velocity (½t Vmax) of the coupling reaction between COX-1 and COX-2 to PGIS were established. The experiment was further confirmed by a kinetics study using hybrid enzymes linking COX-1 or COX-2 to PGIS. Finally, COX-1 or COX-2 and PGIS were respectively fused to red (RFP) and cyanic (CFP) fluorescence proteins, and co-expressed in cells. The distances between COXs and PGIS were compared by FRET.Key findingsThe Km for converting arachidonic acid (AA) to PGI2 by COX-2 coupled to PGIS is ~ 2.0 μM; however, it was 3-fold more (~ 6.0 μM) for COX-1 coupled to PGIS. The Km and ½t Vmax for COX-2 linked to PGIS were ~ 2.0 μM and 20 s, respectively, which were 2–5 folds faster than that of COX-1 linked to PGIS. The FRET study found that the distance between COX-2-RFP and PGIS–CFP is shorter than that between COX-1-RFP and PGIS–CFP.SignificanceThe study provided strong evidence suggesting that the low Km, faster ½t Vmax, and closer distance are the basis for COX-2 dominance over COX-1 (coupled to PGIS) in PGI2 synthesis, and further demonstrated the mechanisms of selective COX-2 inhibitors with higher potential to reduce synthesis of the vascular protector, PGI2.  相似文献   

7.
Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury. Specifically, partial HIF-1α deficiency attenuated SMAO-induced increases in intestinal permeability, lipid peroxidation, mucosal caspase-3 activity, and IL-1β mRNA levels. Furthermore, partial HIF-1α deficiency prevented the induction of ileal mucosal inducible nitric oxide synthase (iNOS) protein levels after SMAO and iNOS deficiency ameliorated SMAO-induced villus injury. Resistance to SMAO-induced gut injury was also associated with resistance to lung injury, as reflected by decreased levels of myeloperoxidase, IL-6 and IL-10 in the lungs of HIF-1α(+/-) mice. In contrast, a short duration of SMAO (15 min) followed by 3 h of reperfusion neither induced mucosal HIF-1α protein levels nor caused significant gut and lung injury in wild-type or HIF-1α(+/-) mice. This study indicates that intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. However, the duration and severity of the gut I/R insult dictate whether HIF-1 plays a gut-protective or deleterious role.  相似文献   

8.
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.  相似文献   

9.
The better adaptation of native Tibetans to hypoxia is thought to be partly due to improved umbilical circulation, which results in reduced pre- and postnatal fatalities. We hypothesized that the difference in umbilical circulation between native Tibetans and other high-altitude inhabitants was due to differences in the expression of hypoxia-induced factor (HIF-1) and its target genes vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). We tested this hypothesis by examining the effect of hypoxia on the expression of HIF-1alpha, VEGF, and iNOS in cultured umbilical venous endothelial cells (UVECs) from native Tibetans and immigrant Hans. UVECs were collected and cultured under hypoxic (0.5% oxygen) or normoxic conditions for 2, 4, 12 and 24 h. The mRNA levels of HIF-1alpha, VEGF, endothelial nitric oxide synthase (eNOS) and iNOS and the protein level of HIF-1alpha were determined with RT-PCR and Western blot analyses, respectively. In both immigrant Han and Tibetans, HIF-1alpha mRNA was constitutively expressed under normoxic condition, and remained constant after hypoxic exposure. In contrast, HIF-1alpha protein was undetectable under normoxic condition, but underwent dynamic changes in response to hypoxia. It was induced at 4 h, peaked at 12 h, and remained elevated at 24 h. Concurrent with the induction of HIF-1alpha protein, the mRNA levels of VEGF and iNOS were also up-regulated whereas that of eNOS was down-regulated. The lack of a hypoxia-related difference in the expression of HIF-1alpha and its target genes suggests that HIF-1alpha does not play a critical role in high altitude adaptation. Alternative mechanisms may be responsible for the better adaptation of native Tibetans.  相似文献   

10.
The development of cyclooxygenase-2 (COX-2) selective inhibitors prompted studies aimed at treating chronic inflammatory diseases and cancer by using this new generation of drugs.Yet, several recent reports pointed out that long-term treatment of patients with COX-2 selective inhibitors (especially rofecoxib) caused severe cardiovascular complicances. The aim of this study was to ascertain whether, in addition to inhibiting COX-2, rofecoxib may also affect prostacyclin (PGI2) level by inhibiting PGI2 forming enzyme (prostacyclin synthase, PGIS). In order to evaluate if selective (celecoxib, rofecoxib) and non-selective (aspirin, naproxen) anti-inflammatory compounds could decrease PGI2 production in endothelial cells by inhibiting PGIS, we analyzed the effect of anti-inflammatory compounds on the enzyme activity by ELISA assay after addition of exogenous substrate, on PGIS protein levels by Western blotting and on its subcellular distribution by confocal microscopy. We also analyzed the effect of rofecoxib on PGIS activity in bovine aortic microsomal fractions enriched in PGIS. This study demonstrates an inhibitory effect of rofecoxib on PGIS activity in human umbilical vein endothelial (HUVE) cells and in PGIS-enriched bovine aortic microsomal fractions, which is not observed by using other anti-inflammatory compounds. The inhibitory effect of rofecoxib is associated neither to a decrease of PGIS protein levels nor to an impairment of the enzyme intracellular localization. The results of this study may explain the absence of a clear relationship between COX-2 selectivity and cardiovascular side effects. Moreover, in the light of these results we propose that novel selective COX-2 inhibitors should be tested on PGI2 synthase activity inhibition.  相似文献   

11.
We have performed double-label immunofluorescence microscopy studies to evaluate the extent of co-localization of prostacyclin synthase (PGIS) and thromboxane synthase (TXS) with cyclooxygenase (COX)-1 and COX-2 in normal aortic endothelium. In dogs, COX-2 expression was found to be restricted to small foci of endothelial cells while COX-1, PGIS and TXS were widely distributed throughout the endothelium. Quantification of the total cross-sectioned aortic endothelium revealed a 6- to 7-fold greater expression of COX-1 relative to COX-2 (55 vs. 8%) and greater co-distribution of PGIS with COX-1 compared to COX-2 (19 vs. 3%). These results are in contrast to the extensive co-localization of PGIS and COX-2 in bronchiolar epithelium. In rat and human aortas, immunofluorescence studies also showed significant COX-1 and PGIS co-localization in the endothelium. Only minor focal COX-2 expression was detected in rat endothelium, similar to the dog, while COX-2 was not detected in human specimens. Inhibition studies in rats showed that selective COX-1 inhibition caused a marked reduction of 6-keto-PGF(1alpha) and TXB(2) aortic tissue levels, while COX-2 inhibition had no significant effect, providing further evidence for a functionally larger contribution of COX-1 to the synthesis of prostacyclin and thromboxane in aortic tissue. The data suggest a major role for COX-1 in the production of both prostacyclin and thromboxane in normal aortic tissue. The extensive co-localization of PGIS and COX-2 in the lung also indicates significant tissue differences in the co-expression patterns of these two enzymes.  相似文献   

12.
In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α) translocation and vascular endothelial growth factor (VEGF) expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS) are involved in heart vascular regulation, endothelial NOS (e-NOS) and inducible NOS (i-NOS) expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events due to an immature anti-oxidant defensive system in newborn rat hearts.  相似文献   

13.
《Free radical research》2013,47(5):628-636
Abstract

We investigated the effects of hypoxia on inducible NO synthase (iNOS) activity and expression in rheumatoid arthritis (RA) synoviocytes. We further studied the relationship between nitrosative stress and NADPH oxidase (NOX) in such conditions. Human cultured synoviocytes were treated for 24 hours with IL-1β, TNF-α or neither, and submitted to hypoxia or normoxia for the last 6 hours. Nitrite production and iNOS expression were increased under hypoxia conditions in RA cells in comparison to normoxia. Hypoxia did not potentate the basal and cytokine-induced superoxide productions, while NOXs’ subunit expression and p47-phox phosphorylation were increased. Nitrosylation of NOXs and p47-phox was not raised under hypoxia conditions. Finally, peroxynitrite production was significantly increased under hypoxia conditions, in comparison to normoxia. Our results provide evidence for upregulation of iNOS and NOX activities in RA synoviocytes under hypoxia conditions, associated to an increased peroxynitrite production. Synovial cell metabolism under hypoxia conditions might be different from that in normoxia.  相似文献   

14.
15.
iNOS expression inhibits hypoxia-inducible factor-1 activity   总被引:11,自引:0,他引:11  
Hypoxia-inducible factor-1 (HIF-1) activates genes important in vascular function such as vascular endothelial growth factor (VEGF), erythropoietin (EPO), and inducible nitric oxide synthase (iNOS). iNOS catalyzes the synthesis of nitric oxide (NO), a free radical gas that mediates a number of cellular processes, including regulation of gene expression, vasodilatation, and neurotransmission. Here we demonstrate that iNOS expression inhibits HIF-1 activity under hypoxia in C6 glioma cells transfected with an iNOS gene and a VEGF promoter-driven luciferase gene. HIF-1 induction of VEGF-luciferase activity in C6 cell is also inhibited by sodium nitroprusside (SNP). Furthermore, pretreatment of C6 cells with N-acetyl-l-cysteine (NAC), an antioxidant, nullified the inhibitory effect of iNOS on HIF-1 binding. These results demonstrate that NO generated by iNOS expression inhibits HIF-1 activity in hypoxic C6 cells and suggest a negative feedback loop in the HIF-1 --> iNOS cascade.  相似文献   

16.
Sun D  Wang Y  Liu C  Zhou X  Li X  Xiao A 《Life sciences》2012,90(23-24):900-909
AimsIt is well recognized that microvascular injury is a major determinant of renal fibrosis. Mounting evidence shows that nitric oxide (NO) plays an important role in angiogenesis. Therefore, we investigated to the effects of NO on kidney angiogenesis and renal fibrosis.MethodsIn the present study, a unilateral ureteral obstruction (UUO) model was established with l-arginine (l-Arg, 1 g/dl) and N-nitro-l-arginine methyl ester (L-NAME, 5 mg/dl) serving as interference factors. We investigated the alteration of NO concentration with spectrophotometry, peritubular capillary (PTC) density with aminopeptidase P (JG12) immunohistochemical staining, and the expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) with immunohistochemical staining and Western blotting at weeks 2, 3 and 4.Key findingsOur findings showed that the expressions of VEGF, eNOS and PTC density were significantly decreased in rats with UUO, which was accompanied by a progressive increase in HIF-1α, TGF-β1 and an area of renal interstitial fibrosis. The administration of l-Arg promoted the synthesis of NO and significantly elevated the expressions of VEGF, eNOS and PTC density with the conspicuous loss of HIF-1α and TGF-β1 expressions and ultimately ameliorated renal fibrosis, which was markedly aggravated by L-NAME administration.SignificanceThese findings demonstrate that NO appears to play an important role in kidney angiogenesis and in slowing the progression of renal interstitial fibrosis, which suggests that NO may serve as a novel therapeutic strategy for preventing renal fibrosis as well as fibrosis in other organs.  相似文献   

17.
18.
The receptor tyrosine kinase Axl is involved in diabetic vascular disease. This study aims to investigate the effect of high glucose on endothelial cells injury and Axl expression in hypoxia condition in vitro, and we present details of the mechanism associated with overexpression of Axl rescue the high glucose injury. Our results showed that high glucose impaired both human umbilical vein endothelial cells (HUVECs) and EAhy926 cells angiogenesis in hypoxia condition. In addition, high glucose inhibits Axl and hypoxia-inducible factor 1-α (HIF-1α) protein expression in hypoxia condition. Axl overexpression significantly reversed endothelial cells dysfunction in high glucose/hypoxia. Furthermore, Axl overexpression in EAhy926 cells increases HIF-1α protein synthesis through PI3K/Akt/mTOR/p70 S6K signal pathway but not Mek/Erk in high glucose/hypoxia condition. This study demonstrates that high glucose can alter Axl signaling and HIF-1α in hypoxia condition. Overexpression of Axl may rescue endothelial cells dysfunction and HIF-1α expression through its downstream signals in high glucose/hypoxia.  相似文献   

19.
Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1alpha protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl2) induced accumulation of HIF-1alpha protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1alpha protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1alpha protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1alpha, suggesting that DFX-induced increase of HIF-1alpha and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1alpha accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1alpha accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1alpha protein by modulating cyclooxygenase-2 signaling pathway.  相似文献   

20.
Prostacyclin synthase (PGIS) cDNA comprises 1500 nucleotides coding for a 500 amino acid protein. It is a heme protein with spectral characteristics of cytochrome p450 (CYP). It does not possess the typical CYP mono-oxygenase activity but catalyzes the rearrangement of prostaglandin H2 to form PGI2. Analysis of its structure-function by molecular modeling and site-directed mutagenesis reveals a long substrate channel lined by hydrophobic residues. Cys-441 has been identified as the proximal axial ligand of heme. Tyr-430 is nitrated by peroxynitrite which results in reduced PGIS catalytic activity, suggesting that Tyr-430 is located close to the heme pocket. PGIS is constitutively expressed and may be upregulated by cytokines, reproductive hormones, and growth factors. It is physically colocalized with cyclooxygenases and phospholipases, and functionally coupled with these enzymes. PGIS coupling with COX-2 has been shown to play an important role in vascular protection, embryo development and implantation, and cancer growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号