首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fibrin (Fn) deposition defines several type 1 immune responses, including delayed-type hypersensitivity and autoimmunity in which polymorphonuclear leukocytes (PMNs) are involved. Fn monomer and fibrinogen are multivalent ligands for a variety of cell receptors during cell adhesion. These cell receptors provide critical linkage among thrombosis, inflammation, and cancer metastasis under venous flow conditions. However, the mechanisms of Fn-mediated interactions among immune cells and circulating tumor cells remain elusive. By using a cone-plate viscometer shear assay and dual-color flow cytometry, we demonstrated that soluble fibrinogen and Fn had different abilities to enhance heterotypic aggregation between PMNs and Lu1205 melanoma cells in a shear flow, regulated by thrombin levels. In addition, the involvement of integrin α(v)β(3), ICAM-1, and CD11b/CD18 (Mac-1) in fibrin(ogen)-mediated melanoma-PMN aggregations was explored. Kinetic studies provided evidence that ICAM-1 mediated initial capture of melanoma cells by PMNs, whereas α(v)β(3) played a role in sustained adhesion of the two cell types at a shear rate of 62.5 s(-1). Quantitative analysis of the melanoma-PMN interactions conducted by a parallel-plate flow chamber assay further revealed that at a shear rate of 20 s(-1), α(v)β(3) had enough contact time to form bonds with Mac-1 via Fn, which could not otherwise occur at a shear rate higher than 62.5 s(-1). Our studies have captured a novel finding that leukocytes could be recruited to tumor cells via thrombin-mediated Fn formation within a tumor microenvironment, and α(v)β(3) and ICAM-1 may participate in multistep fibrin(ogen)-mediated melanoma cell adhesion within the circulation.  相似文献   

3.
In addition to being an important mediator of migration and invasion of tumor cells, β3 integrin can also enhance TGF-β1 signaling. However, it is not known whether β3 might influence the induction of metastatic phenotype of tumor cells, especially non-metastatic tumor cells which express low level of β3. Here we report that H2O2 and HOCl, the reactive oxygen species produced by neutrophils, could cooperate with TGF-β1 to induce metastatic phenotype of non-metastatic hepatocellular carcinoma (HCC) cells. TGF-β1/H2O2/HOCl, but not TGF-β1 or H2O2/HOCl, induced β3 expression by triggering the enhanced activation of p38 MAPK. Intriguingly, β3 in turn promoted TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of HCC cells by enhancing TGF-β1 signaling. β3 promoted TGF-β1/H2O2/HOCl-induced expression of itself via positive feed-back effect on p38 MAPK activation, and also promoted TGF-β1/H2O2/HOCl-induced expression of α3 and SNAI2 by enhancing the activation of ERK pathway, thus resulting in higher invasive capacity of HCC cells. By enhancing MAPK activation, β3 enabled TGF-β1 to augment the promoting effect of H2O2/HOCl on anoikis-resistance of HCC cells. TGF-β1/H2O2/HOCl-induced metastatic phenotype was sufficient for HCC cells to extravasate from circulation and form metastatic foci in an experimental metastasis model in nude mice. Inhibiting the function of β3 could suppress or abrogate the promoting effects of TGF-β1/H2O2/HOCl on invasive capacity, anoikis-resistance, and extravasation of HCC cells. These results suggest that β3 could function as a modulator to promote TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of non-metastatic tumor cells, and that targeting β3 might be a potential approach in preventing the induction of metastatic phenotype of non-metastatic tumor cells.  相似文献   

4.

Background

The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions.

Methodology/Principal Findings

A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains.

Conclusions

These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function.  相似文献   

5.
MgADP and MgATP binding to catalytic sites of βY341W-α3β3Γ subcomplex of F1-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α3β3Γ sub-complex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 μM and 12 mM, and 46 μM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K d of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α3β3Γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F1-ATPases.  相似文献   

6.
α6β2 Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons in the CNS are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine addiction and Parkinson disease. However, recent studies indicate that the α6 subunit can also associate with the β4 subunit to form α6β4 nAChRs that are difficult to pharmacologically distinguish from α6β2, α3β4, and α3β2 subtypes. The current study characterized a novel 16-amino acid α-conotoxin (α-CTx) TxIB from Conus textile whose sequence is GCCSDPPCRNKHPDLC-amide as deduced from gene cloning. The peptide and an analog with an additional C-terminal glycine were chemically synthesized and tested on rat nAChRs heterologously expressed in Xenopus laevis oocytes. α-CTx TxIB blocked α6/α3β2β3 nAChR with an IC50 of 28 nm. In contrast, the peptide showed little or no block of other tested subtypes at concentrations up to 10 μm. The three-dimensional solution structure of α-CTx TxIB was determined using NMR spectroscopy. α-CTx TxIB represents a uniquely selective ligand for probing the structure and function of α6β2 nAChRs.  相似文献   

7.
The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNFα and IL-1β cytokines.Key words: cyclosporin A, CD11a/CD18 adhesion molecules, pleurisy, TNFα and IL-1β  相似文献   

8.
The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils, 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNF-α and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNF-α and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNF-α and IL-1β cytokines.  相似文献   

9.
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed.  相似文献   

10.
Tumor cell expansion relies on nutrient supply, and oxygen limitation is central in controlling neovascularization and tumor spread. Monocytes infiltrate into tumors from the circulation along defined chemotactic gradients, differentiate into tumor-associated macrophages (TAMs), and then accumulate in the hypoxic areas. Elevated TAM density in some regions or overall TAM numbers are correlated with increased tumor angiogenesis and a reduced host survival in the case of various types of tumors. To evaluate the role of TAMs in tumor growth, we here specifically eliminated TAMs by in vivo application of dichloromethylene diphosphonate (DMDP)-containing liposomes to mice bearing various types of tumors (e.g., B16 melanoma, KLN205 squamous cell carcinoma, and 3LL Lewis lung cancer), all of which grew in the dermis of syngeneic mouse skin. When DMDP-liposomes were injected into four spots to surround the tumor on day 0 or 5 after tumor injection and every third day thereafter, both the induction of TAMs and the tumor growth were suppressed in a dose-dependent and injection number-dependent manner; and unexpectedly, the tumor cells were rejected by 12 injections of three times-diluted DMDP-liposomes. The absence of TAMs in turn induced the invasion of inflammatory cells into or around the tumors; and the major population of effector cells cytotoxic against the target tumor cells were CD11b+ monocytic macrophages, but not CCR3+ eosinophils or Gr-1+ neutrophils. These results indicate that both the absence of TAMs and invasion of CD11b+ monocytic macrophages resulted in the tumor rejection.  相似文献   

11.
Osteopontin (OPN) is a multifunctional protein that has been linked to various intractable inflammatory diseases. One way by which OPN induces inflammation is the production of various functional fragments by enzyme cleavage. It has been well appreciated that OPN is cleaved by thrombin, and/or matrix metalloproteinase-3 and -7 (MMP-3/7). Although the function of thrombin-cleaved OPN is well characterized, little is known about the function of MMP-3/7-cleaved OPN. In this study, we found a novel motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved mouse OPN binds to α9β1 integrin. Importantly, this novel motif is involved in the development of anti-type II collagen antibody-induced arthritis (CAIA). This study provides the first in vitro and in vivo evidence that OPN cleavage by MMP-3/7 is an important regulatory mechanism for CAIA.  相似文献   

12.
Objective

Atrial fibrillation (AF) is a major cause of stroke with lifetime risks. microRNAs (miRNAs) are associated with AF attenuation, yet the mechanism remains unknown. This study investigated the functional mechanism of miR-29b in atrial fibrosis in AF.

Methods

The AF rat model was established by a 7-day intravenous injection of Ach-CaCl2 mixture. AF rats were injected with adeno-associated virus (AAv)-miR-29b and TGFβRΙ overexpression plasmid. AF duration was recorded by electrocardiogram. Atrial fibrosis was observed by Masson staining. Expressions of COL1A1, COL3A1, TGFβRΙ, TGFβΙ, miR-29b and Smad-2/3 pathway-related proteins in atrial tissues were detected by RT-qPCR and Western blot. Binding sites of miR-29b and TGFβRΙ were predicted and their target relationship was verified by dual-luciferase reporter assay.

Results

miR-29b was poorly expressed and expressions of COL1A1, COL3A1, TGFβRΙ, and TGFβ1 were increased in atrial tissues of AF rats. miR-29b overexpression alleviated atrial fibrosis, reduced expressions of COL1A1, COL3A1, and TGFβ1, and shortened AF duration in AF rats. TGFβRΙ was highly expressed in atrial tissues of AF rats. miR-29b targeted TGFβRΙ. TGFβRΙ overexpression overcame the improving effect of miR-29b overexpression on AF. miR-29b overexpression decreased ratios of p-Smad-2/3 and Smad-2/3 and inhibited the Smad-2/3 pathway.

Conclusion

miR-29b might mitigate atrial fibrosis in AF rats by targeting TGFβRΙ and inhibiting the Smad-2/3 pathway.

  相似文献   

13.
GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called “loop D” which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the “100H/R-site” benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50–17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4/6+β3- EtOH/Ro15-4513 site. This model reconciles many years of alcohol research on GABARs and provides a plausible explanation for the competitive relationship between ethanol and iBZ alcohol antagonists in which bulky moieties at the C7 position compete with ethanol for its binding site. We conclude with a critical discussion to suggest that much of the controversy surrounding this issue might be due to fundamental species differences in alcohol and alcohol antagonist responses in rats and mice.  相似文献   

14.
Two fungal strains were evaluated for β-N-acetylhexosaminidase production by solid state fermentation using different agro-industrial residues such as commercial wheat bran (CWB) and shrimp shell chitin waste (SSCW), of which Penicillium monoverticillium CFR 2 a local soil isolate showed significantly (P ≤ 0.001) higher β-N-acetylhexosaminidase activity on CWB medium as compared with the activity of Fusarium oxysporum CFR 8. Fermentation parameters such as incubation temperature, incubation time, initial moisture content and inoculum concentration were optimized by statistically designed experiments, using 3**(4–1) fractional factorial design of Response Surface Methodology. The high R2 (0.9512) observed during validation experiment showed the usefulness of the model. Highest level of enzyme activity (311.84 U/g IDS) was predicted at 75% (w/w) initial moisture content, 26 °C incubation temperature, 168 h incubation time and initial inoculum, at the highest concentration tested (2.95 ml spore suspension/5 g substrate). Statistical optimization yielded a 4.5 fold increase in β-N-acetylhexosaminidase activity. The crude β-N-acetylhexosaminidase showed optimum temperature of 57 ± 1 °C and pH of 3.6 and retained 50% activity after 1 h of incubation at 57 ± 1 °C. SDS–PAGE zymogram revealed crude enzyme was a monomer with an apparent molecular weight ~110 kDa. The crude enzyme formed 6.81 ± 0.03 mM/l of N-acetyl chitooligosaccharides from colloidal chitin in 24 h of incubation. HPLC analysis revealed hydrolysate contained 37.57% N-acetyl chitotriose and 62.43% N-acetyl chitohexose, indicating its potential for specific N-acetyl chitooligosaccharides production.  相似文献   

15.

Objective

Diabetic nephropathy (DN) is a serious complication for patients with diabetes mellitus (DM). Emerging evidence suggests that complement C3a is involved in the progression of DN. The aim of this study was to investigate the effect of C3a Receptor Agonist (C3aRA) on DN and its potential mechanism of action in rats with type 2 diabetes mellitus (T2DM).

Methods

T2DM was induced in SD rats by a high fat diet (HFD) plus repeated low dose streptozocin (STZ) injections. T2DM rats were treated with vehicle or C3aRA for 8 weeks. Biochemical analysis, HE and PAS stains were performed to evaluate the renal function and pathological changes. Human renal glomerular endothelial cells (HRGECs) were cultured and treated with normal glucose (NG), high glucose (HG), HG+C3a, HG+C3a+C3aRA and HG+C3a+BAY-11-7082 (p-IKBα Inhibitor) or SIS3 (Smad3 Inhibitor), respectively. Real-time PCR, immunofluorescent staining and western blot were performed to detect the mRNA and protein levels, respectively.

Results

T2DM rats showed worse renal morphology and impaired renal function compared with control rats, including elevated levels of serum creatinine (CREA), blood urea nitrogen (BUN) and urine albumin excretion (UACR), as well as increased levels of C3a, C3aR, IL-6, p-IKBα, collagen I, TGF-β and p-Smad3 in the kidney of T2DM rats and C3a-treated HRGECs. In contrast, C3aRA treatment improved renal function and morphology, reduced CREA, UACR and the intensity of PAS and collagen I staining in the kidney of T2DM rats, and decreased C3a, p-IKBα, IL-6, TGF-β, p-Smad3 and collagen I expressions in HRGECs and T2DM rats.

Conclusion

C3a mediated pro-inflammatory and pro-fibrotic responses and aggravated renal injury in T2DM rats. C3aRA ameliorated T2DN by inhibiting IKBα phosphorylation and cytokine release, and also TGF-β/Smad3 signaling and ECM deposition. Therefore, complement C3a receptor is a potential therapeutic target for DN.  相似文献   

16.
In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+ subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+ subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+ site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators.  相似文献   

17.
Abstract

The molecular structure of N6-(4-nitrobenzyl)-β-D-2′-deoxyadenosine (I) has been determined by single crystal X-ray diffraction. A potent inhibitor of adenosine permeation in cultured S49 mouse lymphoma cells, I binds tightly (KD 2.4 nM) to high affinity membrane sites present on the nucleoside transporter elements of these cells. Compound I crystallizes in the trigonal space group P3221 with unit cell dimensions a = b = 8.0009(9)Å, c = 49.174(8)Å, and Z = 6. The structure was solved by direct methods and refined by least-squares to a final R = 0.038. The mean plane of the 4-nitrobenzyl group, an important substituent for potent nucleoside transport inhibition in a series of S6-substituted 6-thioinosine derivatives, is inclined at an angle of 120.6° to the plane of the adenine ring. The torsion angles around the methylene carbon atom of this benzyl group are C(6)-N(6)-C(10)-C(11), 96.6° and N(6)-C(10)-C(11)-C(12), 93.6°. The glycosidic torsion angle, X, is 217.1° which corresponds to the common anti nucleoside conformation. The deoxyribose ring, however, has the unusual C(1′)-exo conformation, with C(1′) displaced 0.608Å from the plane of C(2′), C(3′), C(4′) and O(4′). The conformation about the exocyclic C(4′)-C(5′) bond is gauche+.  相似文献   

18.
19.
In pigs the endogenously produced compound androstenone is metabolised in the liver in two steps by 3β-hydroxysteroid dehydrogenase (3β-HSD) and sulphotransferase 2A1 (SULT2A1). The present study investigated the effect of selected sex-steroids (0.01–1 μM androstenone, testosterone and estradiol), skatole (1–100 μM) and secondary plant metabolites (1–100 μM) on the expression of 3β-HSD and SULT2A1 mRNA. Additionally the effect of a global methanolic extract of dried chicory root was investigated and compared to previous obtained in vivo effects. Primary hepatocytes were isolated from the livers of piglets (crossbreed: Landrace × Yorkshire and Duroc) and cultured for 24 h before treatment for an additionally 24 h. RNA was isolated from the hepatocytes and specific gene expression determined by RT-PCR using TaqMan probes. The investigated sex-steroids had no effect on the mRNA expression of 3β-HSD and SULT2A1, while skatole decreased the content of SULT2A1 30% compared to control. Of the investigated secondary plant metabolites artemisinin and scoparone (found in Artemisia sp.) lowered the content of SULT2A1 by 20 and 30% compared to control, respectively. Moreover, we tested three secondary plant metabolites (lactucin, esculetin and esculin) found in chicory root. Lactucin increased the mRNA content of both 3β-HSD and SULT2A1 by 200% compared to control. An extract of chicory root was shown to decrease the expression of both 3β-HSD and SULT2A1. It is concluded that the gene expression of enzymes with importance for androstenone metabolism is regulated by secondary plant metabolites in a complex manner.  相似文献   

20.
Treatment of intact C3H10T1/2 cells or microsomes therefrom with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzanthracene (BA) enhanced CYP1B1 activity and CYP1B1 expression as revealed by elevations of CYP1B1-catalyzed DMBA metabolism, CYP1B1 apoprotein level and CYP1B1 gene expression. One hundred µM DHEA caused an 80-90% inhibition of cellular DMBA metabolism without inflicting cell death. Cytosolic glucose-6-phosphate dehydrogenase (G6PDH) was also inhibited in DHEA-treated cells, presumably due to the inhibition of NADP reduction. In contrast, neither DMBA metabolism nor CYP1B1 apoprotein was inhibited by DHEA in the microsomes isolated from these cells. DHEA (100 M), TCDD (10 nM) and BA (10 M) stimulated the activities and increased the apoprotein levels of two peroxisomal enzymes, namely, acyl CoA oxidase (ACOX) and acyl CoA hydrolase (ACH2) and also induced the expression of CYP1B1 and ACOX genes. Cytosolic fatty acyl-CoA -oxidation was also stimulated by DHEA, TCDD and BA. In corroboratory experiments, it was found that concomittant with the stimulation of the activity of a key enzyme regulator of fatty acid homeostasis, namely, glycerol-3-phosphate dehydrogenase (G3PDH), these agents enhanced arachidonic acid (AA) metabolism as judged by the release of [3H] from AA into the culture medium. Collectively, these data suggest that DHEA mediates the regulation of CYP1B1 and inhibits BA and TCDD-induced CYP1B1-catalyzed carcinogen (DMBA) activation in 10T1/2 cells through metabolic interactions that involve the activation of the peroxisomal and fatty acid -oxidation signaling pathways. These results also present evidence for the first time, for the possible peroxisomal effects of TCDD and BA which are similar to those of DHEA in this mouse embryo fibroblast cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号