首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The colonic mucosal tissue provides a vital barrier to luminal antigens. This barrier is composed of a monolayer of simple columnar epithelial cells. The colonic epithelium is dynamically turned over and epithelial cells are generated in the stem cell containing crypts of Lieberkühn. Progenitor cells produced in the crypt-bases migrate toward the luminal surface, undergoing a process of cellular differentiation before being shed into the gut lumen. In order to study these processes at the molecular level, we have developed a simple method for the microdissection of two spatially distinct regions of the colonic mucosa; the proliferative crypt zone, and the differentiated surface epithelial cells. Our objective is to isolate specific crypt and surface epithelial cell populations from mouse colonic mucosa for the isolation of RNA and protein.  相似文献   

2.
Abstract

Trefoil peptides (TFF) are constitutively expressed in the gastrointestinal tract and are involved in gastrointestinal defence and repair by promoting epithelial restitution. Although there is a general consensus regarding the pro-motogenic activity of trefoil peptides, the cellular mechanisms through which they mediate these processes are not completely understood. Pertubation of the E-cadherin/catenin complex at intercellular junctions appears to be a functional pathway through which TFF2 and TFF3 promote cell migration. Tight junction complexes seal the paracellular spaces between cells and contribute to epithelial barrier function. TFF3 peptide stimulation stabilises these junctions through upregulation of the tightening protein claudin-1 and redistribution of ZO-1 from the cytoplasm to the intercellular membrane with an increase in binding to occludin. Modulation of the functional activity and subcellular localisation of epithelial junctional adhesion molecules represent important mechanisms by which trefoil peptides may promote migration of intestinal epithelial cells in vitro and healing of mucosal damage in vivo.  相似文献   

3.
Balancing cellular demise and survival constitutes a key feature of resilience mechanisms that underlie the control of epithelial tissue damage. These resilience mechanisms often limit the burden of adaptive cellular stress responses to internal or external threats. We recently identified Diedel, a secreted protein/cytokine, as a potent antagonist of apoptosis-induced regulated cell death in the Drosophila intestinal midgut epithelium during aging. Here, we show that Diedel is a ligand for RGD-binding Integrins and is thus required for maintaining midgut epithelial cell attachment to the extracellular matrix (ECM)-derived basement membrane. Exploiting this function of Diedel, we uncovered a resilience mechanism of epithelial tissues, mediated by Integrin–ECM interactions, which shapes cell death spreading through the regulation of cell detachment and thus cell survival. Moreover, we found that resilient epithelial cells, enriched for Diedel–Integrin–ECM interactions, are characterized by membrane association of Catalase, thus preserving extracellular reactive oxygen species (ROS) balance to maintain epithelial integrity. Intracellular Catalase can relocalize to the extracellular membrane to limit cell death spreading and repair Integrin–ECM interactions induced by the amplification of extracellular ROS, which is a critical adaptive stress response. Membrane-associated Catalase, synergized with Integrin–ECM interactions, likely constitutes a resilience mechanism that helps balance cellular demise and survival within epithelial tissues.

A key feature of the resilience mechanisms that underlie the control of epithelial tissue damage is the balance between cell death and survival. This study shows that the anti-oxidant enzyme catalase can relocate to membranes in order to promote the resilience of the Drosophila midgut epithelium, synergizing with integrin-ECM interactions to prevent the spread of cell death.  相似文献   

4.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

5.
Migration is a complex process for epithelial tissues, because the epithelium must move as an intact sheet to preserve its barrier function. The requirement for structural integrity is met by coupling cell-to-matrix and cell-to-cell adhesion at the cellular level, and by coordinating cell proliferation and cell migration in the tissue as a whole. Proliferation is suppressed at the migrating cell front, allowing cells in this region to remain tightly packed while advancing rapidly. At the same time, proliferation is enhanced in a region behind the advancing cell front to expand the epithelial cell sheet. This review considers the extracellular signals and intracellular signaling pathways that regulate these processes in the lens and corneal epithelium, with emphasis on the commonalities that link these tissues.  相似文献   

6.
Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20–30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.  相似文献   

7.
BackgroudExposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions.PurposeWe investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function.MethodsTo investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis.ResultsIn this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model.ConclusionThese data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.  相似文献   

8.
The intracellular serine protease inhibitors (serpins) are an important family of proteins that protect cells form proteinase-mediated injury. Understanding the tissue and cellular expression pattern of this protein family can provide important insights into their physiologic roles. For example, high expression in epithelial tissues, such as lung, may suggest a biologic function in cellular defense, secretion, or selective absorption. Although the expression pattern of many of the intracellular serpins has been well described, one member of this class, SERPINB12, has not been carefully examined. We generated a mouse monoclonal antibody directed against human SERPINB12 and delineated its specificity and tissue and cell type distribution pattern through immunoblotting and immunohistochemistry, respectively. This monoclonal antibody was human specific and did not cross-react with other human intracellular serpins or mouse Serpinb12. SERPINB12 was found in nearly all the tissues investigated. In addition, this serpin was found in multiple cell types within individual tissues but primarily the epithelium. These data suggest that SERPINB12, like some other intracellular serpins, may play a vital role in barrier function by providing protection of epithelial cells.  相似文献   

9.
目的 研究严重急性呼吸综合征冠状病毒2(SARS-CoV-2)膜蛋白对宿主细胞mRNA前体(pre-mRNA)3"非翻译区(UTR)加工的影响。方法 本研究以人肺上皮细胞系A549为模型,利用瞬时转染在细胞内过表达SARS-CoV-2膜蛋白;利用RNA-Seq测序技术及生物信息学分析方法,系统性描绘宿主细胞选择性多聚腺苷酸化(alternative polyadenylation,APA)事件;Metascape数据库对发生显著APA变化的基因进行功能富集分析;RT-qPCR验证靶基因3"UTR长度变化;蛋白质免疫印迹(Western blot)检测目的蛋白表达水平。结果 SARS-CoV-2膜蛋白外源表达后宿主细胞内共813个基因发生显著APA变化。GO和KEGG分析显示,差异APA基因广泛参与有丝分裂细胞周期、调节细胞应激等生物过程,涉及病毒感染和蛋白质加工等。从中进一步筛选出AKT1基因,在IGV软件中显示3"UTR延长;RT-qPCR验证AKT1基因的3"UTR长度变化趋势;Western blot结果显示AKT1蛋白磷酸化水平增加。结论 SARS-CoV-2膜蛋白潜在影响宿主pre-mRNA的3"UTR加工,其中参与多种病毒性生物过程的AKT1基因 3"UTR延长,且其编码的蛋白质功能在细胞内被激活。  相似文献   

10.
BackgroundEnvironmental conditions regulate the association/aggregation states of proteins and their action in cellular compartments. Analysing protein behaviour in presence of lipid membranes is fundamental for the comprehension of many functional and dysfunctional processes. Here, we present an experimental study on the interaction between model membranes and α-casein. α-casein is the major component of milk proteins and it is recognised to play a key role in performing biological functions. The conformational properties of this protein and its capability to form supramolecular structures, like micelles or irreversible aggregates, are key effectors in functional and pathological effects.MethodsBy means of quantitative fluorescence imaging and complementary spectroscopic methods, we were able to characterise α-casein association state and the course of events induced by pH changes, which regulate the interaction of this molecule with membranes.ResultsThe study of these complex dynamic events revealed that the initial conformation of the protein critically regulates the fate of α-casein, size and structure of the newly formed aggregates and their effect on membrane structures. Disassembly of micelles due to modification in electrostatic interactions results in increased membrane structure rigidity which accompanies the formation of protein lipid flower-like co-aggregates with protein molecules localised in the external part.General significanceThese results may contribute to the comprehension of how the initial state of a protein establishes the course of events that occur upon changes in the molecular environment. These events which may occur in cells may be essential to functional, pathological or therapeutical properties specifically associated to casein proteins.  相似文献   

11.

Background

Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo.

Methodology and Principal Findings

To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression.

Conclusions

In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1.  相似文献   

12.
目的:探讨WT-1和Smac蛋白在上皮性卵巢癌中的表达及其临床意义。方法:应用免疫组织化学染色方法检测40例正常卵巢组织,40例卵巢上皮性良性肿瘤组织,60例全面分期手术治疗的上皮性卵巢癌组织中WT-1、Smac蛋白的表达,并分析WT-1、Smac蛋白的表达与上皮性卵巢癌临床病理特征的相关性及二者之间的相关性。结果:WT-1蛋白在上皮性卵巢癌组织中的表达明显高于正常卵巢组织或卵巢上皮性良性肿瘤组织(P0.05);Smac蛋白在上皮性卵巢癌组织中表达明显低于正常卵巢组织或卵巢上皮性良性肿瘤组织(P0.05)。上皮性卵巢癌组织中WT-1、Smac蛋白的表达与肿瘤临床分期、组织分化程度、淋巴结有无转移均显著相关(P0.05)。且上皮性卵巢癌中WT-1、Smac蛋白的表达呈明显负相关性(r=-0.35,P0.05)。结论:WT-1蛋白高表达或Smac蛋白低表达可能在上皮性卵巢癌的发生、发展中发挥重要作用,检测WT-1、Smac蛋白的表达有助于上皮性卵巢癌恶性程度的判断和预后评估。  相似文献   

13.
Invertebrate gap junctions are composed of Innexin channel proteins that are structurally and functionally analogous to the connexins in vertebrates. In situhybridization experiments have shown that most of the eight known innexingenes in Drosophilaare expressed in a complex and overlapping temporal and spatial profile, with several members showing high levels of expression in developing epithelia of the embryo. To further study the cellular roles of Innexins, we have generated antibodies against Innexins 1 and 2 and studied their protein distribution in the developing embryo. We find that both Innexins are co-expressed in a number of epithelial tissues including the epidermis, the gut and the salivary glands. On the cellular level, we find both proteins localized to the membranes of epithelial cells. Immunohistochemical analysis using cell polarity markers indicates that Innexin 1 is predominantly localized to the baso-lateral domain of epithelial cells, basal to septate junctions. In contrast, we find a variable positioning of Innexin 2 along the apico-basal axis of epithelial cells depending on the type of tissue and organ. Our findings suggest that the distribution of Innexin channel proteins to specific membrane domains of epithelial cells is regulated by tissue specific factors during the development of epithelia in the fly embryo.  相似文献   

14.
ABSTRACT:?

There is great commercial interest in using immobilized cells for fermented beverage processes. The process advantages offered by immobilized cells are numerous, but an understanding of the mass transfer characteristics of a given system is needed in order to achieve efficient processes and high quality products. This is especially important in the food and beverage industry where fermentation products contribute to the flavor and aroma of the final product. The fundamental principles of mass transfer in immobilized cell systems are covered in this review. An overview of the current research efforts focused on external and internal mass transfer characteristics of immobilized cells used in fermentation processes is presented. Methods for measuring substrate diffusivities within immobilization matrices and areas requiring further research are discussed.  相似文献   

15.
BackgroundMyosin light chain kinase (MLCK) is a Ca2+-calmodulin-dependent enzyme dedicated to phosphorylate and activate myosin II to provide force for various motile processes. In smooth muscle cells and many other cells, small MLCK (S-MLCK) is a major isoform. S-MLCK is an actomyosin-binding protein firmly attached to contractile machinery in smooth muscle cells. Still, it can leave this location and contribute to other cellular processes. However, molecular mechanisms for switching the S-MLCK subcellular localization have not been described.MethodsSite-directed mutagenesis and in vitro protein phosphorylation were used to study functional roles of discrete in-vivo phosphorylated residues within the S-MLCK actin-binding domain. In vitro co-sedimentation analysis was applied to study the interaction of recombinant S-MLCK actin-binding fragment with filamentous actin. Subcellular distribution of phosphomimicking S-MLCK mutants was studied by fluorescent microscopy and differential cell extraction.ResultsPhosphorylation of S-MLCK actin-binding domain at Ser25 and/or Thr56 by proline-directed protein kinases or phosphomimicking these posttranslational modifications alters S-MLCK binding to actin filaments both in vitro and in cells, and induces S-MLCK subcellular translocation with no effect on the enzyme catalytic properties.ConclusionsPhosphorylation of the amino terminal actin-binding domain of S-MLCK renders differential subcellular targeting of the enzyme and may, thereby, contribute to a variety of context-dependent responses of S-MLCK to cellular and tissue stimuli.General significanceS-MLCK physiological function can potentially be modulated via phosphorylation of its actin recognition domain, a regulation distinct from the catalytic and calmodulin regulatory domains.  相似文献   

16.
BackgroundProteins, which comprise one of the major classes of biomolecules that constitute a cell, interact with other cellular factors during both their biogenesis and functional states. Studying not only static but also transient interactions of proteins is important to understand their physiological roles and regulation mechanisms. However, only a limited number of methods are available to analyze the dynamic behaviors of proteins at the molecular level in a living cell. The site-directed in vivo photo-cross-linking approach is an elegant technique to capture protein interactions with high spatial resolution in a living cell.Scope of reviewHere, we review the in vivo photo-cross-linking approach including its recent applications and the potential problems to be considered. We also introduce a new in vivo photo-cross-linking-based technique (PiXie) to study protein dynamics with high spatiotemporal resolution.Major conclusionsIn vivo photo-cross-linking enables us to capture weak/transient protein interactions with high spatial resolution, and allows for identification of interacting factors. Moreover, the PiXie approach can be used to monitor rapid folding/assembly processes of proteins in living cells.General significanceIn vivo photo-cross-linking is a simple method that has been used to analyze the dynamic interactions of many cellular proteins. Originally developed in Escherichia coli, this system has been extended to studies in various organisms, making it a fundamental technique for investigating dynamic protein interactions in many cellular processes. This article is part of a Special issue entitled “Novel major techniques for visualizing ‘live’ protein molecules” edited by Dr. Daisuke Kohda.  相似文献   

17.
Tissue distribution of the secretory protein, SPLUNC1, in the human fetus   总被引:6,自引:2,他引:6  
We previously identified a tissue-specific gene, short palate, lung, and nasal epithelium clone 1 (SPLUNC1), in nasopharyngeal epithelial tissues. SPLUNC1 was differentially expressed in nasopharyngeal carcinoma. Bioinformatic analysis revealed that SPLUNC1 has the bactericidal permeability-increasing protein/lipid-binding protein (BPI/LBP) domain and a 19 amino acid signal peptide, which suggest that it is a secretory protein. Its precise cellular localization in the respiratory tract is mainly in mucous cells and ducts of submucosal glands. However, little is known about its expression pattern in various human tissues. We generated a highly specific antibody and analyzed its distribution in the human fetus by immunohistochemistry to more precisely determine SPLUNC1 protein localization in human tissues. The results were further validated by RT-PCR. Our results showed that SPLUNC1 protein is expressed at not only the serous glands and epithelium of the upper respiratory tract and digestive tract, but also in the oculi of human embryos. Interestingly, we also found positive staining in fetus adipose tissue, a result not previously reported in studies of adult human tissues. Western blot analysis detected a 24 kDa SPLUNC1 protein in the compounds of nasopharyngeal secretions. This secretory protein was also detected in saliva and tears. Our research suggests that SPLUNC1 protein may not only be an antimicrobial peptide that plays an important role in the maintenance of homeostasis in the upper respiratory tract, oculi, and alimentary tract, it may also be important in the development and lipid metabolism of the adipose tissue.  相似文献   

18.
Diploid tadpoles of the discoglossid frog, Bombina orientalis, possess a distinctive rectangular network of epidermal melanophores. The ontogeny of this network was examined and utilized as a model for the comparison of tissue integrity and cellular interactions in diploid and haploid embryos. During the process of network formation in diploids, a variety of melano-phore-melanophore interactions was observed. These included temporary contacts between neighboring melanophore processes, deviations of processes toward neighboring melanophores, and lateral extensions between closely situated, parallel processes originating from different cell bodies. None of these intercellular interactions were seen in haploid embryos. Haploid melanophores displayed fewer cytoplasmic extensions, appeared to be randomly oriented, and failed to establish the ordered network seen in diploid embryos. It was also discovered that, in comparison with diploid tissues, relative densities of melanophores and epithelial cells were not uniformly regulated in haploid embryos. These findings are interpreted as indicating that haploid embryos possess fundamental cell and tissue defects, and that the “haploid syndrome” is likely based on more than one or a few defective physiological functions.  相似文献   

19.
摘要 目的:研究卵巢癌组织和细胞中miR-19的表达,探讨其异常表达对卵巢癌细胞Kelch样环氧氯丙烷相关蛋白-1(Kelch-like epichlorohydrin-associated protein1,Keap1)--核因子E2相关因子2(nuclearfactor-E2-relatedfactor2,Nrf2) /血红素氧合酶-1(heme oxygenase1,HO-1)信号通路及卵巢癌细胞增殖的影响。方法:回顾性收集2019年1月至2020年12月于我院就诊的患者经病理切片诊断为卵巢癌上皮细胞的手术标本30例,卵巢良性肿瘤标本30例,正常卵巢组织标本30例。免疫组化检测不同标本中Keap1、Nrf2、HO-1的表达,检测卵巢组织及细胞中miR-19、Keap1、Nrf2、HO-1的mRNA表达水平,及卵巢癌细胞中Keap1、Nrf2、HO-1的蛋白表达水平。在OVCAR-3细胞中沉默miR-19后,Western Blot检测细胞内Keap1、Nrf2、HO-1蛋白表达水平,收集沉默miR-19,对照组,沉默Nrf2、对照组的OVCAR-3细胞,继续培养0 h、24 h、48 h后,检测细胞增殖和凋亡。结果:Keap1蛋白在卵巢癌组织中的阳性表达显著低于良性卵巢肿瘤组织及正常卵巢组织;Nrf2和HO-1蛋白在卵巢癌组织中的阳性表达显著低于良性卵巢肿瘤组织及正常卵巢组织(P<0.05);沉默miR-19抑制其表达后,细胞内Keap1 mRNA、蛋白表达水平明显升高,Nrf2、HO-1 mRNA表达水平无明显变化,蛋白表达水平明显降低(P<0.05);沉默miR-19 组、沉默Nrf2组与转染阴性对照组相比,增殖能力明显降低,凋亡能力明显升高(P<0.05)。结论:卵巢癌细胞中,miR-19表达水平升高,可通过调控Keap1-Nrf2/HO-1信号通路影响卵巢癌细胞的增值、凋亡能力。  相似文献   

20.
目的 构建细胞通信网络有助于揭示细胞间协同工作机制、生物学过程和疾病发病机理。目前基于配体-受体相互作用构建细胞通信网络的方法大多只考虑配体和受体的表达信息,忽略了受体对其调控基因的信号传递影响,导致构建的细胞通信网络可靠性较低。鉴于此,本文提出IRRG算法,旨在构建更为准确的细胞通信网络,并挖掘具有生物学意义的细胞通信模式。方法 本文提出了一种整合受体调控基因表达信息构建细胞通信网络的方法(命名为IRRG)。该方法通过随机游走方式计算受体对下游基因的影响得分,进而与配体-受体共表达量结合构建细胞通信网络。结果 使用IRRG构建了小鼠滤泡间表皮(IFE)细胞通信网络并分析了配体-受体对的生物学意义,验证了IRRG计算受体影响得分的稳定性和细胞通信网络构建的可靠性。此外,使用IRRG构建了透明细胞肾细胞癌(ccRCC)的细胞通信网络,挖掘并分析其肿瘤微环境细胞通信模式。结论 IRRG可以构建富有生物学意义并且可靠的细胞通信网络,帮助人们从细胞通信的角度更深入地了解多种生物过程。IRRG算法代码可从GitHub获取:https://github.com/NWPU-903PR/IRRG。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号