首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyaline layer (HL) surrounding the sea urchin blastula appears to dissolve in 1 M glycine. However, after this treatment, there persists over the surfaces of the blastomeres a layer of material, referred to here as the apical lamina (AL), that sloughs off as an adhesive convoluted bag upon gradual dissociation of the embryo. Isolated hyaline layers, referred to as HL-AL complexes, were analyzed by urea-SDS-polyacrylamide gel electrophoresis. A major protein of the HL-AL complex, hyalin, bands or precipitates in the stacking gel. Two other major proteins, both strongly PAS positive, migrate with apparent molecular weights of 175K and 145K daltons. As with intact embryos, the glycine wash removes the hyalin protein from the isolated HL-AL complex, leaving the undissolved AL which consists primarily of the 175K- and 145K-dalton proteins. The embryo's own perivitelline-localized cortical granule peroxidase heavily radioiodinates the proteins of the HL-AL complex, further verifying their apical, extracellular location. Unlike hyalin, the AL proteins do not precipitate with calcium ions. Compared to the entire HL-AL complex, the AL contains a greater percentage of carbohydrate. No sialic acid is associated with the HL-AL complex, but the AL contains some sulfate. In contrast to a published report based on ultrastructural staining, no biochemical evidence was found in this study for the presence of collagen or significant glycosaminoglycan within the HL-AL complex. No developmental differences were observed in AL proteins from 1-hr-old embryos compared to those from blastulae. However, there is evidence suggesting heterogeneity and developmental differences in hyalin. The possible organization of hyalin and the AL proteins into separate layers surrounding the embryo is discussed. The influence of the AL proteins in morphogenesis and cell adhesion is considered, and hypothetical roles attributed to the HL and hyalin are critically questioned.  相似文献   

2.
Echinonectin is a dimeric, glycoprotein found in the hyaline layer of the developing sea urchin embryo. It was found that echinonectin supports adhesion of embryonic cells in vitro. Previous studies have shown that the protein hyalin also supports adhesion. The purpose of this study was to examine the specificity of cell-echinonectin interactions during sea urchin development. Primary mesenchyme cells (PMCs) ingress into the blastocoel during gastrulation. In the process the PMCs lose contact with the hyaline layer. It was found experimentally that differentiating PMCs decreased their adhesion to hyalin at the time of ingression. It was of interest, therefore, to determine whether there was a coordinate loss of adhesion to echinonectin at ingression as well. When cell-echinonectin interactions were quantified using a centrifugal force-based adhesion assay, it was shown that micromeres adhered well to echinonectin. At the time of ingression, PMCs displayed reduced adhesion to echinonectin just as had been found when hyalin was tested as a substrate. There was no change in adhesion of presumptive ectoderm or endoderm to echinonectin over the same time period. Early in gastrulation presumptive ectoderm and endoderm adhered to echinonectin only half as strongly as to equimolar concentrations of hyalin. After gastrulation endoderm cells were observed to retain the same relative affinity to hyalin and echinonectin, while ectoderm cells became equally adhesive for both hyalin and echinonectin. Quantitatively, this represents an overall increase in the affinity of ectodermal cells for echinonectin. Adhesion to combined substrata of echinonectin and hyalin was reduced but not abolished by monoclonal antibodies specific for echinonectin. The antibodies did not cross-react with hyalin. We conclude that both echinonectin and hyalin independently act as adhesive substrata for the developing sea urchin embryo. PMCs lose an affinity for echinonectin and ectodermal cells later increase their affinity for this substrate.  相似文献   

3.
We have generated and characterized a monoclonal antibody (McA Tg-HYL) that recognizes sea urchin hyalin as evidenced by immunofluorescence staining of the hyaline layer (HL) and immunoblot staining of the hyalin protein band. On immunoblots of HL extracts only the hyalin protein reacted with McA Tg-HYL. Immunoprecipitates of radioactive proteins from embryos incubated with [35S]methionine yielded radioactive hyalin and 190, 140 and 105 x 10(3) Mr proteins associated with hyalin. McA Tg-HYL was generated against Tripneustes gratilla embryos but reacts with hyalin from the distantly related sea urchin species, Colobocentrotus atratus, Strongylocentrotus purpuratus, Arbacia punctulata, Lytechinus variegatus and Lytechinus pictus. Developing embryos of the above-mentioned six species were treated with McA Tg-HYL and did not gastrulate or form arms. Observations of treated embryos revealed areas of separation of the hyaline layer from the underlying embryonic cells, suggesting that McA Tg-HYL was interfering with binding of the cells to the HL. Using the centrifugation-based adhesion assay of McClay et al. (Proc. natn. Acad. Sci. U.S.A. 78, 4975-4979, 1981), Fab' fragments of McA Tg-HYL were found to inhibit cell-hyalin binding. McA Tg-HYL did not inhibit hyalin gelation in vitro or the reaggregation of dissociated blastula cells. We postulate that McA Tg-HYL recognizes an evolutionarily conserved hyalin domain involved in cell-hyalin binding and required for normal epithelial folding.  相似文献   

4.
Hyalin is a large (ca. 350 x 10(3) kD by gel electrophoresis) molecule that contributes to the hyalin layer surrounding the sea urchin embryo. In previous work a mAb (McA Tg-HYL), specific for hyalin, was found to inhibit cell-hyalin adhesion and block morphogenesis of whole embryos (Adelson, D. L., and T. D. Humphreys. 1988. Development. 104:391-402). In this report, hyalin ultrastructure was examined via rotary shadowing. Hyalin appeared to be a filamentous molecule approximately 75-nm long with a globular "head" about 12 nm in diameter that tended to form aggregates by associating head to head. Hyalin molecules tended to associate with a distinct high molecular weight globular particle ("core"). In fractions containing the core particle often more than one hyalin molecule were seen to be associated with the core. The core particle maintained a tenacious association with hyalin throughout purification procedures. The site(s) of McA Tg-HYL binding to the hyalin molecule were visualized by decorating purified hyalin with the antibody and then rotary shadowing the complex. In these experiments, McA Tg-HYL attached to the hyalin filament near the head region in a pattern suggesting that more than one antibody binding site exists on the hyalin filament. From the ultrastructural data and from the cell adhesion data presented earlier we conclude that hyalin is a filamentous molecule that binds to other hyalin molecules and contains multiple cell binding sites. Attempts were made to demonstrate the existence of lower molecular weight hyalin precursors. Whilst no such precursors could be identified by immunoprecipitation of in vivo labeled embryo lysates, immunoprecipitation of in vitro translation products suggested such precursors (ca 40 x 10(3) kD) might exist.  相似文献   

5.
The 330 kDa fibrillar glycoprotein hyalin is a well known component of the sea urchin embryo extracellular hyaline layer. Only recently, the main component of hyalin, the hyalin repeat domain, has been identified in organisms as widely divergent as bacteria and humans using the GenBank database and therefore its possible function has garnered a great deal of interest. In the sea urchin, hyalin serves as an adhesive substrate in the developing embryo and we have recently shown that exogenously added purified hyalin from Strongylocentrotus purpuratus embryos blocks a model cellular interaction in these embryos, archenteron elongation/attachment to the blastocoel roof. It is important to demonstrate the generality of this result by observing if hyalin from one species of sea urchin blocks archenteron elongation/attachment in another species. Here we show in three repeated experiments, with 30 replicate samples for each condition, that the same concentration of S. purpuratus hyalin (57 microg/ml) that blocked the interaction in living S. purpuratus embryos blocked the same interaction in living Lytechinus pictus embryos. These results correspond with the known crossreactivity of antibody against S. purpuratus hyalin with L. pictus hyalin. We propose that hyalin-hyalin receptor binding may mediate this adhesive interaction. The use of a microplate assay that allows precise quantification of developmental effects should help facilitate identification of the function of hyalin in organisms as divergent as bacteria and humans.  相似文献   

6.
Platelet membrane components adhering with high affinity to collagen fibers were studied by means of an affinity column in which fibrillar type I collagen was physically immobilized. Intact rabbit platelets in 1 mM EGTA adhered to the column but did not aggregate. Adhesion was dependent on the collagen concentration and on the number of platelets applied. Passage through the column without adhesion did not affect the potential for subsequent platelet binding. Surface-labelled whole platelets were passaged through this column, lysed in Triton and in SDS and labelled components adhering to the collagen were analysed on SDS-polyacrylamide gels. It was found that Triton lysis removed most of the major surface glycoproteins but left the cytoskeleton on the column. Subsequent SDS elution removed the cytoskeletal proteins along with the remaining major surface glycoproteins. The label left on the column could not be eluted with 8 M urea or up to 4 M NaCl. Collagenase digestion of the column collagen released a single surface glycoprotein of Mr 80,000. Limited chymotryptic digestion of the labelled platelets prior to their application to the column did not affect their binding. A radiolabelled band of the same molecular weight (MW) became bound to the collagen following passage of the chymotrypsin-treated platelets. This band was trypsin-sensitive following SDS-polyacrylamide gel electrophoresis (SDS-PAGE). These results, along with other published evidence, suggest that at least one platelet membrane component, expressed on the surface of the unstimulated platelet, binds with high affinity to fibrillar type I collagen and is probably involved in platelet collagen recognition.  相似文献   

7.
Many longstanding questions about dynamics of virus-cell interactions can be answered by combining fluorescence imaging techniques with fluorescent protein (FP) tagging strategies. Successfully creating a FP fusion with a cellular or viral protein of interest first requires selecting the appropriate FP. However, while viral architecture and cellular localization often dictate the suitability of a FP, a FP''s chemical and physical properties must also be considered. Here, we discuss the challenges of and offer suggestions for identifying the optimal FPs for studying the cell biology of viruses.  相似文献   

8.
How terminally differentiating cells are selectively expelled from the basal layer of epidermis has been a source of interest and speculation for many years. The problem can now be studied in culture, using involucrin synthesis as an early marker of terminal differentiation in human keratinocytes. When keratinocytes are forced to grow as a monolayer by reducing the calcium ion concentration of the culture medium, they still begin to synthesize involucrin. Raising the level of calcium ions induces stratification, and cells that are synthesizing involucrin are selectively expelled from the basal layer. I have found that during calcium-induced stratification no new proteins or glycoproteins are synthesized, and the rate of cell division does not change. Movement of involucrin-positive cells out of the basal layer was found to be unaffected by cycloheximide, tunicamycin, or cytosine arabinoside. These results suggest that keratinocytes growing as a monolayer already have the necessary properties to determine their position when stratification is induced. Addition of calcium simply allows formation of desmosomes and other intimate cell contacts required for stratification. The properties of involucrin-positive cells that determine their suprabasal position include a reduced affinity for the culture substrate and preferential adhesion to other cells at the same stage of terminal differentiation. The molecular basis of these adhesive changes is discussed.  相似文献   

9.
The G protein-coupled prostaglandin F2α (PGF2α) receptor [F prostanoid (FP) receptor] has been implicated in many physiological events including cardiovascular, respiratory, immune, reproductive, and endocrine responses. Binding of PGF2α to FP receptor elicits inositol production and protein kinase C-dependent MAPK activation through Gα(q) coupling. Here we report that AL-8810, previously characterized as an orthosteric antagonist of PGF2α-dependent, Gα(q)-mediated signaling, potently activates ERK1/2 in a protein kinase C-independent manner. Rather, AL-8810 promoted ERK1/2 activation via an epidermal growth factor receptor transactivation mechanism in both human embryonic kidney 293 cells and in the MG-63 osteoblast-like cells, which express endogenous FP receptors. Neither AL-8810- nor PGF2α-mediated stimulation of FP receptor promoted association with β-arrestins, suggesting that MAPK activation induced by these ligands is independent of β-arrestin's signaling scaffold functions. Interestingly, the spatiotemporal activation of ERK1/2 promoted by AL-8810 and PGF2α showed almost completely opposite responses in the nucleus and the cytosol. Finally, using [(3)H]thymidine incorporation, we noted differential regulation of PGF2α- and AL-8810-induced cell proliferation in MG-63 cells. This study reveals, for the first time, the signaling biased nature of FP receptor orthosteric ligands toward MAPK signaling. Our findings on the specific patterns of ERK1/2 activation promoted by FP receptor ligands may help dissect the distinct roles of MAPK in FP receptor-dependent physiological responses.  相似文献   

10.
A series of 11-oxa prostaglandin analogs was evaluated for FP receptor binding and activation. Several compounds having aryloxy-terminated lower chains were found to be potent agonists. Topical ocular dosing of AL-12182, the isopropyl ester prodrug of the potent agonist 13, lowered intraocular pressure in the monkey by 40% accompanied by minimal conjunctival hyperemia in the rabbit. AL-12182 was synthesized on multigram scale starting with D-sorbitol.  相似文献   

11.
Amyloid light chain (AL) amyloidosis is a protein misfolding disease where immunoglobulin light chains sample partially folded states that lead to misfolding and amyloid formation, resulting in organ dysfunction and death. In vivo, amyloid deposits are found in the extracellular space and involve a variety of accessory molecules, such as glycosaminoglycans, one of the main components of the extracellular matrix. Glycosaminoglycans are a group of negatively charged heteropolysaccharides composed of repeating disaccharide units. In this study, we investigated the effect of glycosaminoglycans on the kinetics of amyloid fibril formation of three AL cardiac amyloidosis light chains. These proteins have similar thermodynamic stability but exhibit different kinetics of fibril formation. We also studied single restorative and reciprocal mutants and wild type germ line control protein. We found that the type of glycosaminoglycan has a different effect on the kinetics of fibril formation, and this effect seems to be associated with the natural propensity of each AL protein to form fibrils. Heparan sulfate accelerated AL-12, AL-09, κI Y87H, and AL-103 H92D fibril formation; delayed fibril formation for AL-103; and did not promote any fibril formation for AL-12 R65S, AL-103 delP95aIns, or κI O18/O8. Chondroitin sulfate A, on the other hand, showed a strong fibril formation inhibition for all proteins. We propose that heparan sulfate facilitates the formation of transient amyloidogenic conformations of AL light chains, thereby promoting amyloid formation, whereas chondroitin sulfate A kinetically traps partially unfolded intermediates, and further fibril elongation into fibrils is inhibited, resulting in formation/accumulation of oligomeric/protofibrillar aggregates.  相似文献   

12.
FP21 is a 21-kDa fucoprotein which fractionates with the cytosol after high-speed centrifugation of gently lysed Dictyostelium cells. Less than 0.7% of FP21 is associated with vesicles. In proliferating cells, 4 x 10(5) fucosyl moieties/cell are associated with FP21 as anionic, possibly O-linked oligosaccharides equal in size to 4.8 glucose units. FP21 is underfucosylated in a mutant strain (HL250) that depends on extracellular fucose for synthesis of GDP-fucose. To determine the cellular site of FP21 fucosylation, cytosolic and vesicular preparations from strain HL250 were compared for their ability to transfer fucose from GDP-fucose to FP21. Cytosolic preparations fucosylate endogenous FP21 in a time-, concentration-, and divalent cation-dependent fashion, with a Km for GDP-fucose of 1.4 microM. Activity in normal cell cytosol is dependent on exogenous mutant FP21, demonstrating that FP21 is normally fully fucosylated. Both mutant and normal cytosols are also able to alpha-fucosylate a type 1 glycolipid substrate (8-methoxycarbonyloctyl-Gal beta 1-3 beta GlcNAc), but not related substrates, with Km values for the type 1 glycolipid of 0.99 mM and for GDP-fucose of 1.6 microM. Competitive inhibition between FP21 and the type 1 glycolipid shows that the same enzyme fucosylates both substrates. Intact and permeabilized vesicle preparations from wild-type cells are unable to fucosylate FP21 or the type 1 glycolipid by a divalent cation-dependent mechanism, and thus are devoid of FP21-fucosyltransferase. Since control experiments showed that vesicle leakage is minimal during cytosol preparation, these results indicate that FP21 is synthesized and fucosylated in the cytosolic compartment, by an unusual soluble fucosyltransferase.  相似文献   

13.
The existence of integral membrane components that are involved in cell–substratum adhesion has been postulated. Using an immunochemical approach developed in this laboratory, we provide further evidence for the role in cell–substratum adhesion of integral membrane glycoproteins within a molecular weight region of 120,000–140,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of material enriched approximately 100-fold in adhesion-related components revealed the 120,000–140,000 Mr glycoproteins in an adherent hamster melanoma cell line. These glycoproteins are greatly reduced in a non-adherent variant. Induction of adhesion in these cells by exposure to BudR is accompanied by re-expression of the surface adhesion antigens.  相似文献   

14.
FP-Class prostaglandin analogs have demonstrated utility for the treatment of glaucoma and ocular hypertension. A series of novel FP prostaglandin analogs was designed to optimize topical ocular activity and reduce ocular side-effects by replacing 13-carbon with oxygen. A facile synthesis was successfully developed for synthesis of the 13-oxa prostaglandins from the commercially available Corey aldehyde benzoate. Among the compounds synthesized, AL-16082 was the most potent prostaglandin FP agonist in vitro. In a prostaglandin FP receptor-linked second-messenger assay, phosphoinositide (PI) turnover, it exhibited a potency value (EC50) of 1.9 nM (78% max. response relative to fluprostenol). The isopropyl ester of AL-16082, compound AL-16049, significantly lowered intraocular pressure (IOP) in the ocular hypertensive monkey eyes by 30%. In the study of acute ocular irritation response in New Zealand albino rabbits, AL-16049 produced lower incidence of hyperemia, swelling, and discharge than PGF (1 μg), and a similar incidence of hyperemia, swelling, and discharge to latanoprost (1.8 μg). AL-16049 also produced no signs of ocular irritation or discomfort in the cat at the doses evaluated.  相似文献   

15.
The plasma membrane is a complex organelle responsible for many cellular functions. In addition to mediating the exchange of components with the extracellular fluid, the plasma membrane is involved in cell adhesion to matrix proteins in vivo and in vitro. In vitro, adherent cells have three distinct plasma membrane domains to carry out these functions: one attached to the substrate (ventral); another exposed to the media (dorsal); and an intracellular domain involved in endocytosis and secretion. A technique has been developed for the rapid isolation of these specific domains from HeLa cells immediately following adhesion to a gelatin substrate. The isolation procedure utilizes the tight binding of cationic colloidal silica to the dorsal plasma membrane domain of attached cells. Following silica binding and cell lysis, the silica-coated dorsal plasma membrane domain is readily separated from intracellular plasma membrane components by virtue of the high density of the silica pellicle, and the intact ventral plasma membrane domain remains attached to the gelatin substrate. Fluorescence and electron microscopy and biochemical studies using 125I-lactoperoxidase labeling, 125I-labeled wheat germ agglutinin binding, and [3H]-fucose incorporation into plasma membrane glycoproteins confirmed the separation of these three topologically distinct plasma membrane domains. The fractions isolated by the technique contained essentially all of the plasma membrane components present in intact cells. This unique membrane-isolation procedure is now being used to analyze membrane flow during plasma membrane domain formation accompanying cell adhesion to an extracellular matrix.  相似文献   

16.
The sea urchin embryo hyaline layer is an extracellular investment which develops within 20 min postinsemination of Strongylocentrotus purpuratus eggs and contains a single calcium-precipitable subunit termed hyalin. Other ultrastructural and biochemical studies have suggested that hyalin is localized in the cortical granules. We have examined the hypothesis that hyalin is a cell surface protein of the unfertilized egg using vectorial lactoperoxidase-catalyzed radioiodination. Extracts of labeled unfertilized eggs contained several labeled proteins, one of which was electrophoretically indistinguishable from authentic hyalin isolated by each of three different procedures. Pronase digestion of labeled unfertilized eggs removed 75% of the label, but the labeled hyalin-like molecule was still present in whole cell extracts. Upon insemination, pronase-digested, labeled eggs formed an apparently normal hyaline layer and whole cell extracts contained the labeled hyalin-like molecule. Denuded, labeled eggs were inseminated and the hyaline layer was selectively solubilized in calcium- and magnesium-free artificial seawater. Labeled hyalin was purified from this crude hyalin preparation to constant specific radioactivity and apparent homogeneity as shown by gel electrophoresis. These data strongly suggest that hyalin or a precursor is a cell surface protein of the unfertilized sea urchin egg.  相似文献   

17.
Cell adhesion and migration properties which are known to play a crucial role in developmental events seem to be modulated by variations in glycosylation of glycoproteins. In the chick embryo, the extracellular matrix (ECM) appears as a loose meshwork of fibrillar material in the space between the epiblast and the hypoblast shortly before the first major cell migrations start. Chick embryos treated with tunicamycin (TN), a specific inhibitor of N-linked glycosylation of proteins, show little or no ECM, diminished cell adhesion and a dramatic alteration in the architecture of the epiblast and of the hypoblast. The first major cell migrations which signal the onset of PS and gastrula formation are inhibited irreversibly in these embryos. Tunicamycin induces a substantial change in the labeling pattern with change in mobility of some polypeptides and with the induction or marked accentuation of multiple charged species (isoforms) of polypeptides different from these already present in the control blastoderm. The N-linked glycosylation of protein(s) that are synthesized during the interaction of the epiblast and of the hypoblast seem to play a critical role in cell adhesion and in the morphogenetic movements of gastrulation in the early chick embryo.  相似文献   

18.
By means of macro- and microscopical methods structure of 412 lumbar intervertebral discs (ID), obtained from 84 corpses of persons died at the age 16-90 years have been studied, as well as 30 macerated lumbar vertebra. During these periods the lumbar ID are formed by hyalin laminae and a connective tissue wall, surrounding the cavity. According to the tissue type, in the ID wall three main layers are differentiated. The external layer is determined as a fibrous ring, the middle one--as fibrous-cartilagenous and the internal one--as a chondromucoid ring. The three layers gradually and consequently turn one into another. According to manifestation degree of these layers, development of the internal layer and size of the cavity three main variants of the ID structure are nominated: intervertebral synarthrosis, intervertebral hemiarthrosis and intervertebral "diathrosis" (real articulations have not been revealed between the vertebral bodies). The occurrence rate of the ID structural variants revealed in the lumbar part of the spinal cord is demonstrated. Absence of chordal mucous in the cavity is specific for the ID during the age periods investigated. The role of the "nucleus" is performed by the internal layer of the ID wall, which possesses a system of processes and a forming peculiar pulpous complex, which ensures the ID adaptation to various changes in position of the vertebral locomotor segment. The pulpous complex is surrounded with a united fibrillar carcass of hyalin laminae and fibrous-cartilagenous ring; together with the carcass it forms an elastic layer between the vertebral bodies.  相似文献   

19.
Summary Monokaryotic haustoria (M-haustoria) ofUromyces vignae inVigna sinensis cells are surrounded by an extrahaustorial matrix (ema) and the invaginated host plasmalemma, the extrahaustorial membrane (ehrn). The ema was characterized with antibodies against components of the plant cell wall; the ema contained hydroxyproline-rich glycoproteins and arabinogalactans/arabinogalactan proteins, both at a higher concentration close to the ehm. Haustoria with large vacuoles had the ema encased by additional layers. An electron-translucent inner layer deposited on top of the ema contained arabinogalactans/arabinogalactan proteins, hydroxyproline-rich glycoproteins, and callose. The inner layer was surrounded by an electron-translucent middle layer with numerous dark inclusions, rich in pectin and fucose bound to xyloglucans. Finally, a more electron-dense outer layer containing arabinogalactans/arabinogalactan proteins and hydroxyproline-rich glycoproteins encased the whole structure. These polysaccharides, with the exception of callose and un-esterified pectin, were also found in the plant Golgi apparatus. The polysaccharides were synthesized in the trans Golgi cisternae and secreted into the host-parasite interface. The secretory events seem to be coupled to endocytosis since numerous coated pits were found on the ehm too. The pits were elongated, sometimes formed tubules and the coat reacted with an antibody against plant clathrin. Our results suggest intensive membrane recycling around haustoria, together with the secretion of cell wall material, which in the case of more or less vacuolated haustoria seems to be responsible for encasementAbbreviations AG/AGP arabinogalactans and arabinogalactan proteins - BSA bovine serum albumin - ehm extrahaustorial membrane - ema extrahaustorial matrix - HRGP2b hydroxyproline rich glycoproteins - M-haustorium monokaryotic haustorium - TBS tris buffered saline  相似文献   

20.
At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号