首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression and modulation of CD44 variant isoforms in humans   总被引:15,自引:0,他引:15  
CD44 is a ubiquitous surface molecule that exists as a number of isoforms, generated by alternative splicing of 10 "variant" exons. Little is known about the expression and function of the variant isoforms, except that certain isoforms may play a role in cancer metastasis. We produced mAbs against CD44 variant regions encoded by exons 4v, 6v, and 9v, by immunizing mice with a fusion protein spanning variant exons 3v to 10v. A comprehensive analysis of human tissues revealed that CD44 variant isoforms were expressed widely throughout the body, principally by epithelial cells. However there was differential expression of CD44 variant exons by different epithelia. Most epithelia expressed exon 9v, but much fewer expressed 6v or 4v. The regions of epithelia that expressed the highest levels of the variant isoforms were the generative cells, particularly the basal cells of stratified squamous epithelium, and of glandular epithelium. CD44 variant isoforms were also expressed differentially by leukocytes, with CD44-9v expressed at very low levels and CD44-6v and 4v virtually absent. However, CD44-9v and CD44-6v were the main variants that were transiently upregulated on T cells after mitogenic stimulation and on myelomonocytic cell lines by TNF alpha and IFN gamma treatment. Some epithelial cell lines could preferentially upregulate CD44-6v upon IFN gamma incubation. These results show that CD44 variant isoforms are expressed much more widely than first appreciated, and that expression of the variant isoforms on some cell types can be modulated by particular cytokines.  相似文献   

2.
H Konig  J Moll  H Ponta    P Herrlich 《The EMBO journal》1996,15(15):4030-4039
Variant isoforms of the cell surface glycoprotein CD44 (CD44v) are expressed during development, in selected adult tissues and in certain metastatic tumor cells. CD44v differ from the standard isoform (CD44s) by up to ten additional exon sequences included by alternative splicing. By cell fusion experiments, we have obtained evidence for the existence of cell-type specific trans-acting factors recruiting CD44 variant exon sequences. Stable cell hybrids of CD44s and CD44v expressing cells indicated a dominant mechanism for variant-exon inclusion. In transient interspecies heterokaryons of human keratinocytes and rat fibroblasts, the ability of the keratinocytes to include all variant exon sequences in CD44 was conferred completely on the rat fibroblast nucleus. Fusions of cells with complex CD44 splice patterns do not permit interpretation of splice control by the relative abundance of a single trans-acting factor, but rather by (a) positively acting factor(s) recruiting variant exon sequences in the 3' to 5' direction and additional factors selecting individual exons. Since the pancreatic carcinoma cell line BSp73ASML (in contrast to the cervix carcinoma cell lines SiHa and ME180) could not transfer its specific splice pattern in cell fusions, we conclude that in some tumors, splicing is also controlled by mutation of cis-acting recognition sites.  相似文献   

3.
CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.  相似文献   

4.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

5.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

6.
CD44 is a glycosylated adhesion molecule and osteopontin is one of its ligand. CD44 undergoes alternative splicing to produce variant isoforms. Our recent studies have shown an increase in the surface expression of CD44 isoforms (sCD44 and v4–v10 variant CD44) in prostate cancer cells over‐expressing osteopontin (PC3/OPN). Formation of CD44/MMP9 complex on the cell surface is indispensable for MMP9 activity. In this study, we have characterized the expression of variant CD44 using RT‐PCR, surface labeling with NHS–biotin, and immunoblotting. Expression of variant CD44 encompassing v4–v10 and sCD44 at mRNA and protein levels are of the same levels in PC3 and PC3/OPN cells. However, an increase in the surface expression of v6, v10, and sCD44 in PC3/OPN cells suggest that OPN may be a ligand for these isoforms. We then proceeded to determine the role of sCD44 in MMP9 activation. Based on our previous studies in osteoclasts, we hypothesized that phosphorylation of CD44 has a role on its surface expression and subsequent activation of MMP9. We have prepared TAT‐fused CD44 peptides comprising unphosphorylated and constitutively phosphorylated serine residues at positions Ser323 and Ser325. Transduction of phosphopeptides at Ser323 and Ser323/325 into PC3 cells reduced the surface levels of CD44, MMP9 activity, and cell migration; but had no effect on the membrane localization of MMP9. However, MMP9 knock‐down PC3 cells showed reduced CD44 at cellular and surface levels. Thus we conclude that surface expression of CD44 and activation of MMP9 on the cell surface are interdependent. J. Cell. Biochem. 108: 272–284, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
《FEBS letters》2014,588(24):4573-4582
Loss of endothelial adherens junctions is involved in tumor metastasis. Here, we demonstrate that, in the metastatic Lu1205 melanoma cells, expression of the CD44 variant CD44v8-v10 induced junction disassembly and vascular endothelial (VE)-cadherin phosphorylation at Y658 and Y731. Short interfering RNA (siRNA)-mediated CD44 knockdown or sialic acid cleavage reversed these effects. Moreover, microspheres coated with recombinant CD44v8-v10 promoted endothelial junction disruption. Overexpression of CD44v8-v10 but not of standard CD44 (CD44s) promoted gap formation in the non-metastatic WM35 melanoma cells, whereas CD44 knockdown or neuraminidase treatment dramatically diminished melanoma transendothelial migration. Endothelial cells transfected with the phosphomimetic VE-cadherin mutant Y658E supported transmigration of CD44-silenced Lu1205 cells. Our findings imply that CD44 variant isoform (CD44v) but not CD44s regulates endothelial junction loss, promoting melanoma extravasation.  相似文献   

8.
Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44(high) GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high) GBM but not from CD44(low) GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44(high) GBM, but not in CD44(low) GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.  相似文献   

9.
Upon antigen encounter epidermal Langerhans cells (LC) and dendritic cells (DC) emigrate from peripheral organs and invade lymph nodes through the afferent lymphatic vessels and then assemble in the paracortical T cell zone and present antigen to T lymphocytes. Part of this process is mimicked by metastasizing tumor cells. Since splice variants of CD44 promote metastasis to lymph nodes we explored the expression of CD44 proteins on migrating LC and DC. We show that following antigen contact, LC and DC upregulate pan CD44 epitopes and epitopes encoded by variant exons v4, v5, v6 and v9. Antibodies against CD44 epitopes arrest LC in the epidermis, prevent the binding of activated LC and DC to the T cell zones of lymph nodes, and severely inhibit their capacity to induce a delayed type hypersensitivity reaction to a skin hapten in vivo. Our results demonstrate that CD44 splice variant expression is obligatory for the migration and function of LC and DC.  相似文献   

10.
11.
Hyaluronidase can modulate expression of CD44   总被引:5,自引:0,他引:5  
CD44 is a family of transmembrane glycoproteins with multiple isoforms generated by alternative exon splicing of a single gene. CD44 and its variants are expressed on a wide variety of cells including cancer cells. The mechanisms by which splice variant exons are selected are unknown. The presence of hyaluronan in the environment of the cell appears to influence that selection process. The expression of particular splice variants of CD44 as well as the simultaneous presence of hyaluronan is important for motility, invasion, and the metastatic spread of some tumors. The influence of hyaluronidase digestion on the expression of CD44 in human cancer cell lines was examined. CD44 isoforms containing alternatively spliced exons were sensitive to hyaluronidase digestion in all lines examined, but differences between cell lines were observed. Expression of CD44s, the standard form, was resistant to digestion in two of three cell lines. A tentative model was formulated proposing that CD44 isoforms containing splice variants are unstable, requiring the continuous presence of ligand for expression. CD44s is relatively more stable, not requiring the continuous presence of hyaluronan. Additionally, a number of new CD44 variant isoforms, not previously observed, were identified.  相似文献   

12.
 Taste buds are accumulations of elongated bipolar cells situated on lingual papillae. The factors that determine the sites where a taste bud may develop are largely obscure, although it is known that the early invasion of nerve fibers plays one of the key roles in taste bud development and maturation. The conditions under which taste bud primordium cells develop are influenced by the interaction between epithelial cells and extracellular matrix molecules of the mesenchyma, such as hyaluronan. Thus, we investigated immunohistochemically the distribution pattern of the receptor for hyaluronan, CD44s, and its epithelial variant isoforms CD44v6 and CD44v9, in taste buds of human embryonic, fetal, perinatal, and adult tongues. Furthermore, we wanted to determine the temporal and spatial relationships of CD44 to sensory innervation of taste bud primordia. In early gestational stages (weeks 7–9), CD44 and its isoforms are expressed on membranes of apical perigemmal (marginal) cells covering taste bud primordia. It seems that CD44 serves as a marker for marginal cells (perigemmal cells) in early developmental stages. The expression of CD44 follows rather than precedes the invasion of sensory nerve fibers and the development of taste bud primordia (weeks 7–8). In new-born and adult taste bud cells, only the standard molecule, CD44s, is expressed; the variant isoforms, CD44v6 and CD44v9, occur only in the adjacent epithelium. From these results it is likely that marginal cells are of the utmost importance for the development and maturation of taste buds. We presume that CD44 is involved in local binding, reuptake, and degradation of hyaluronan in the early stages of taste bud formation. CD44 probably does not induce the transformation of epithelial cells into taste bud primordial cells. What is more, CD44 may change its function in the course of developmental events. Accepted: 13 January 1998  相似文献   

13.
In the current study, we investigated the nature and role of CD44 variant isoforms involved in endothelial cell (EC) injury and tumor cell cytotoxicity mediated by IL-2-activated killer (LAK) cells. Treatment of CD44 wild-type lymphocytes with IL-2 led to increased gene expression of CD44 v6 and v7 variant isoforms and to significant induction of vascular leak syndrome (VLS). CD44v6-v7 knockout (KO) and CD44v7 KO mice showed markedly reduced levels of IL-2-induced VLS. The decreased VLS in CD44v6-v7 KO and CD44v7 KO mice did not result from differential activation and expansion of CD8+ T cells, NK, and NK-T cells or from altered degree of perivascular lymphocytic infiltration in the lungs. LAK cells from CD44v7 KO mice showed a significant decrease in their ability to adhere to and mediate lysis of EC but not lysis of P815 tumor cells in vitro. CD44v7-mediated lysis of EC by LAK cells was dependent on the activity of phosphatidylinositol 3-kinase and tyrosine kinases. Interestingly, IL-2-activated LAK cells expressing CD44hi but not CD44lo were responsible for EC lysis. Furthermore, lysis of EC targets could be blocked by addition of soluble or enzymatic cleavage of CD44v6-v7-binding glycosaminoglycans. Finally, anti-CD44v7 mAbs caused a significant reduction in the adherence to and killing of EC and led to suppression of IL-2-induced VLS. Together, this study suggests that the expression of CD44v7 on LAK cells plays a specific role in EC injury and that it may be possible to reduce EC injury but not tumor cell killing by specifically targeting CD44v7.  相似文献   

14.
A recently described splice variant of CD44 expressed in metastasizing cell lines of rat tumors has been shown to confer metastatic potential to a non-metastasizing rat pancreatic carcinoma cell line and to non- metastasizing sarcoma cells. Homologues of this variant as well as several other CD44 splice variants are also expressed at the RNA level in human carcinoma cell lines from lung, breast, and colon, and in immortalized keratinocytes. Using antibodies raised against a bacterial fusion protein encoded by variant CD44 sequences, we studied the expression of variant CD44 glycoproteins in normal human tissues and in colorectal neoplasia. Expression of CD44 variant proteins in normal human tissues was readily found on several epithelial tissues including the squamous epithelia of the epidermis, tonsils, and pharynx, and the glandular epithelium of the pancreatic ducts, but was largely absent from other epithelia and from most non-epithelial cells and tissues. In human colorectal neoplasia CD44 variant proteins, including homologues of those which confer metastatic ability to rat tumors, were found on all invasive carcinomas and carcinoma metastases. Interestingly, focal expression was also observed in adenomatous polyps, expression being related to areas of dysplasia. The distribution of the CD44 variants in human tissues suggests that they play a role in a few restricted differentiation pathways and that in colorectal tumors one of these pathways has been reactivated. The finding that metastasis-related variants are already expressed at a relatively early stage in colorectal carcinogenesis and tumor progression, i.e., in adenomatous polyps, suggests the existence of a yet unknown selective advantage linked to CD44 variant expression. The continued expression in metastases would be compatible with a role in the metastatic process.  相似文献   

15.
 Isoforms of the transmembrane glycoprotein CD44, which are generated by alternative splicing of nine variant exons, have been implicated in tumor cell adhesion, invasion and metastatic spread and may be indicators of the degree of tumor differentiation. Since little is known about the distribution of CD44 in non-neoplastic neuroendocrine cell types, we systematically investigated 42 samples of tissue from different organs, including the pituitary gland, thyroid, parathyroid, adrenal gland, lung, pancreas, stomach, duodenum, jejunum, ileum, appendix, and colon, immunohistochemically for the expression of CD44 standard and variant exon-encoded gene products (CD44v3, v4, v5, v6, v9). Furthermore, double immunolabeling for CD44 and a variety of peptide hormones was applied to characterize the different neuroendocrine cell types. Our results show that neuroendocrine cells derived from the neuroectoderm lack CD44 immunoreactivity. However, those originated from the endoderm exhibit a variable CD44 immunostaining which is related to their anatomical localization and the degree of differentiation irrespective of the hormone produced. Furthermore, we demonstrate that CD44 positive neuroendocrine cells predominantly express CD44 isoforms of the epithelial type and that hyperplastic clusters of neuroendocrine cells of pancreatic ducts express CD44 most probably as a sign of dedifferentiation. Accepted: 13 September 1996  相似文献   

16.
17.
Summary Several members of the CD44 family of hyaluronan receptors are expressed on keratinocytes. To identify factors that might be important in regulating CD44 expression, we studied CD44 expression on keratinocytes growing in vitro under a variety of conditions and on cells isolated directly from epidermis. Using Western immunoblots and metabolic labeling, we showed that the pattern of CD44 proteins expressed by keratinocytes was strongly influenced by growth and differentiation. Many protein forms of CD44 are expressed on proliferating keratinocytes in preconfluent cultures, whereas only a few forms are expressed on differentiated cells and in confluent cultures. In preconfluent monolayers, at least four splice variants were identified, including epican, CD44H, CD44E, and a 180-kDa variant. In differentiated cells or in confluent cultures, by contrast, only epican and the 180-kDa protein variant were found. Synthesis of all variants is strongly downregulated when keratinocytes become confluent or when they differentiate. Epican is the predominant form of CD44 on keratinocytes under all conditions and is expressed as a heparan, chondroitin, or keratan sulfate proteoglycan. Preconfluent basal keratinocytes, but not confluent or differentiated keratinocytes, also express chondroitin sulfate proteoglycan forms of CD44E and of the 180-kDa core protein. The modal size of the epican expressed on differentiated keratinocytes is smaller than the size of the epican expressed on basal keratinocytes. Thus, cell confluence and differentiation regulate several aspects of CD44 expression on keratinocytes, suggesting nuances in function for the different protein forms.  相似文献   

18.

Background

The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization.

Methods and Findings

The roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of 125I-radiolabeled CD44 antibody.

Conclusions

Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.  相似文献   

19.
目的:构建CD44新剪接变异体siRNA质粒表达载体,建立CD44新变异体抑制表达的鼻咽癌细胞株.方法:合成CD44新变异体特异性干扰DNA片段,干扰DNA片段亚克隆于带绿色荧光蛋白的pGenesil -1.3质粒表达载体中,双酶切和测序鉴定重组表达质粒载体;采用脂质体将重组表达质粒载体转染入鼻咽癌5 -8F细胞系,进行G418筛选;Western blot分析CD44表达.结果:重组CD44干扰DNA片段质粒表达载体的碱基序列和插入方向正确;细胞转染效率达70%;G418筛选获得GFP表达的单克隆鼻咽癌5 -8F细胞株;Western blot分析表明CD44表达受抑制.结论:建立了CD44新变异体抑制表达的鼻咽癌细胞株,为CD44新变异体在鼻咽癌中的生物学功能提供了基础.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号