首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Abstract

In this issue, guest editors Kathy Green and Mario Delmar, who are leaders in the fields of epidermal desmosomes and heart intercalated discs respectively, have joined forces to collate a two-part series of reviews focused on junctional proteins and genes that are targets of skin and heart diseases.  相似文献   

3.
Using immunofluorescence histochemistry and immunoelectron microscopy on sections through myocardiac tissues of diverse mammalian (human, cow, rat, mouse) and fish species we show that both desmosomal and fascia adhaerens proteins identified by gel electrophoresis and immunoblot occur in the area composita, the by far major type of plaque-bearing junctions of the intercalated disks (IDs) connecting cardiomyocytes. Specifically, we demonstrate that desmoplakin and the other desmosomal proteins occur in these junctions, together with N-cadherin, cadherin-11, alpha- and beta-catenin as well as vinculin, afadin and proteins p120(ctn), ARVCF, p0071, and ZO-1, suggestive of colocalization. We conclude that the predominant type of adhering junction present in IDs is a junction sui generis, termed area composita, that is characterized by an unusually high molecular complexity and an intimate association of molecules of both ensembles, the desmosomal one and the fascia adhaerens category. We discuss possible myocardium-specific, complex-forming interactions between members of the two ensembles and the relevance of our findings for the formation and functioning of the heart and for the understanding of hereditary and other cardiomyopathies. We further propose to use this highly characteristic area composita ensemble of molecules as cardiomyocyte markers for the monitoring of cardiomyogenesis, cardiomyocyte regeneration and possible cardiomyocyte differentiation from mesenchymal stem cells.  相似文献   

4.
Among sarcomeric muscles the cardiac muscle cells are unique by, inter alia, a systemic and extended cell-cell contact structure, the intercalated disk (ID), comprising frequent and closely spaced arrays of plaque-coated cell-cell adhering junctions (AJs). As some of these junctions may look somewhat like desmosomes and others like fasciae adhaerentes, the dogma has emerged in the literature that IDs contain - like epithelial cells - both kinds of AJs formed by - for the most - mutually exclusive molecular ensembles. This, however, is not the case. In comprehensive immunoelectron microscopic studies of mammalian (human, bovine, rat, mouse) and non-mammalian (chicken, amphibia, fishes) heart muscle tissues, we have localized major constituents of the desmosomal plaques of polar epithelia, desmoplakin, plakophilin-2 and plakoglobin, as well as the desmosomal cadherins, desmoglein Dsg2 and desmocollin Dsc2, in both kinds of ID AJs, independent of the specific morphological appearance. The desmosomal molecules are not restricted to the desmosome-like-looking junctions but can also be detected in junctions appearing similar to the zonula or fascia adhaerens structures. These AJs of cardiac ID are therefore subsumed under the collective term area composita. We discuss our results with respect to the importance of ID junction molecules for the formation, maintenance and function of the heart, particularly in relation to recent findings that deletions of - or mutations in - genes encoding such proteins can cause severe, sometimes lethal damages.  相似文献   

5.
Desmosomes play a critical role in the maintenance of normal tissue architecture. Skin blistering can occur when desmosomal adhesion is compromised by antibodies in autoimmune diseases such as pemphigus. Inherited mutations in genes encoding desmosomal constituents can adversely affect the skin, and result in heart abnormalities. Desmosomes may have a tumour suppressor function: expression of desmosomal components is reduced in some human cancers, and desmosomal cadherins have the capacity to suppress the invasiveness of cells in culture. Transgenic animal research has provided important insights into the role of these junctions in normal epithelial morphogenesis and disease.  相似文献   

6.
Mezzano V  Sheikh F 《Life sciences》2012,90(9-10):313-321
Anchoring cell-cell junctions (desmosomes, fascia adherens) play crucial roles in maintaining mechanical integrity of cardiac muscle cells and tissue. Genetic mutations and/or loss of critical components in these macromolecular structures are increasingly being associated with arrhythmogenic cardiomyopathies; however, their specific roles have been primarily attributed to effects within the working (ventricular) cardiac muscle. Growing evidence also points to a key role for anchoring cell-cell junction components in cardiac muscle cells of the cardiac conduction system. This is not only evidenced by the molecular and ultra-structural presence of anchoring cell junctions in specific compartments/structures of the cardiac conduction system (sinoatrial node, atrioventricular node, His-Purkinje system), but also because conduction system-related arrhythmias can be found in humans and mouse models of cardiomyopathies harboring defects and/or mutations in key anchoring cell-cell junction proteins. These studies emphasize the clinical need to understand the molecular and cellular role(s) for anchoring cell-cell junctions in cardiac conduction system function and arrhythmias. This review will focus on (i) experimental findings that underline an important role for anchoring cell-cell junctions in the cardiac conduction system, (ii) insights regarding involvement of these structures in age-related cardiac remodeling of the conduction system, (iii) summarizing available genetic mouse models that can target cardiac conduction system structures and (iv) implications of these findings on future therapies for arrhythmogenic heart diseases.  相似文献   

7.
Abstract

Desmosomes have long been appreciated as intercellular junctions that are vital for maintaining the structural integrity of stratified epithelia. More recent clinical investigations of patients with diseases such as arrhythmogenic cardiomyopathy have further highlighted the importance of desmosomes in cardiac tissue, where they help to maintain coordination of cardiac myocytes. Here, we review clinical and mechanistic studies that provide insight into the functions of desmosomal proteins in skin and heart during homeostasis and in disease. While intercellular junctions are organized differently in cardiac and epithelial tissues, studies conducted in epithelial systems may inform our understanding of cardiac desmosomes. We explore traditional and non-traditional roles of desmosomal proteins, ranging from adhesive capacities to nuclear functions. Finally, we discuss how these studies can guide future investigations focused on determining the molecular mechanisms by which desmosomal mutations promote the development of cardiac diseases.  相似文献   

8.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

9.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

10.
Desmosomes are adhesive intercellular junctions of epithelia and cardiac muscle. They have an essential function in maintaining the integrity of tissues, which is compromised in human genetic and autoimmune disease that targets desmosomal components. Recent evidence (1) suggests new roles for the function of desmosomal adhesion in tissue morphogenesis, (2) gives new insights into the molecular mechanism of adhesion, (3) indicates that the desmosomal adhesion molecules, desmocollin and desmoglein, may contribute to the regulation of epidermal diffentiation, and (4) shows that the affinity of desmosomal adhesion is regulated by protein kinase C.  相似文献   

11.
Desmosomes are adhesive intercellular junctions of epithelia and cardiac muscle. They have an essential function in maintaining the integrity of tissues, which is compromised in human genetic and autoimmune disease that targets desmosomal components. Recent evidence (1) suggests new roles for the function of desmosomal adhesion in tissue morphogenesis, (2) gives new insights into the molecular mechanism of adhesion, (3) indicates that the desmosomal adhesion molecules, desmocollin and desmoglein, may contribute to the regulation of epidermal diffentiation, and (4) shows that the affinity of desmosomal adhesion is regulated by protein kinase C.  相似文献   

12.
Abstract

Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell–cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell–cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell–cell junction-based diseases that exhibit CCS electrophysiological defects.  相似文献   

13.
Within the characteristic ensemble of desmosomal plaque proteins, the armadillo protein plakophilin-2 (Pkp2) is known as a particularly important regulatory component in the cytoplasmic plaques of various other cell-cell junctions, such as the composite junctions (areae compositae) of the myocardiac intercalated disks and in the variously-sized and -shaped complex junctions of permanent cell culture lines derived therefrom. In addition, Pkp2 has been detected in certain protein complexes in the nucleoplasm of diverse kinds of cells. Using a novel set of highly sensitive and specific antibodies, both kinds of Pkp2, the junctional plaque-bound and the nuclear ones, can also be localized to the cytoplasmic plaques of diverse non-desmosomal cell-cell junction structures. These are not only the puncta adhaerentia and the fasciae adhaerentes connecting various types of highly proliferative non-epithelial cells growing in culture but also some very proliferative states of cardiac interstitial cells and cardiac myxomata, including tumors growing in situ as well as fetal stages of heart development and cultures of valvular interstitial cells. Possible functions and assembly mechanisms of such Pkp2-positive cell-cell junctions as well as medical consequences are discussed.  相似文献   

14.
Plakoglobin (PG) is a member of the Armadillo family of adhesion/signaling proteins that can be incorporated into both adherens junctions and desmosomes. Loss of PG results in defects in the mechanical integrity of heart and skin and decreased adhesive strength in keratinocyte cultures established from the skin of PG knock-out (PG-/-) mice, the latter of which cannot be compensated for by overexpressing the closely related beta-catenin. In this study, we examined the mechanisms of PG-regulated adhesion in murine keratinocytes. Biochemical and morphological analyses indicated that junctional incorporation of desmosomal, but not adherens junction, components was impaired in PG-/- cells compared with PG+/- controls. Re-expression of PG, but not beta-catenin, in PG-/- cells largely reversed these effects, indicating a key role for PG in desmosome assembly. Epidermal growth factor (EGF) receptor activation resulted in Tyr phosphorylation of PG, which was accompanied by a loss of desmoplakin from desmosomes and decreased adhesive strength following 18-h EGF treatment. Importantly, introduction of a phosphorylation-deficient PG mutant into PG null cells prevented the EGF receptor-dependent loss of desmoplakin from junctions, attenuating the effects of long term EGF treatment on cell adhesion. Therefore, PG is essential for maintaining and regulating adhesive strength in keratinocytes largely through its contributions to desmosome assembly and structure. As a target for modulation by EGF, regulation of PG-dependent adhesion may play an important role during wound healing and tumor metastasis.  相似文献   

15.
Plakoglobin (gamma-catenin), a member of the armadillo family of proteins, is a constituent of the cytoplasmic plaque of desmosomes as well as of other adhering cell junctions, and is involved in anchorage of cytoskeletal filaments to specific cadherins. We have generated a null mutation of the plakoglobin gene in mice. Homozygous -/- mutant animals die between days 12-16 of embryogenesis due to defects in heart function. Often, heart ventricles burst and blood floods the pericard. This tissue instability correlates with the absence of desmosomes in heart, but not in epithelia organs. Instead, extended adherens junctions are formed in the heart, which contain desmosomal proteins, i.e., desmoplakin. Thus, plakoglobin is an essential component of myocardiac desmosomes and seems to play a crucial role in the sorting out of desmosomal and adherens junction components, and consequently in the architecture of intercalated discs and the stabilization of heart tissue.  相似文献   

16.
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connexin channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates.  相似文献   

17.
桥粒为细胞与细胞之间的一种连接结构,参与细胞间机械应力传导. 在心肌组织中,桥粒与粘着连接及缝隙连接共同构成闰盘,对于维护心肌闰盘结构和功能的完整性具有重要作用. 近年来,越来越多的研究表明,桥粒蛋白基因突变、表达的缺失或功能异常,可引起心肌细胞钠、钾离子通道、缝隙连接蛋白等心肌电活动相关结构的重塑,增加心肌电学异质性,进而促发心律失常. 本文将就桥粒蛋白与离子转运相关通道关系的最新研究进展进行综述.  相似文献   

18.
19.
Electrical activation of the myocardium to produce effective pumping of blood depends on the orderly coordinated spatial and temporal transfer of current from one cell to another via gap junctions. Normal ventricular myocytes are extensively coupled by gap junctions and have the capacity to rapidly increase the amount of connexin within gap junction plaques to meet physiological demands for enhanced cell-cell communication. However, myocytes can also rapidly uncouple in response to injury or disease. In general, both acute and chronic forms of heart disease caused by diverse etiologies are associated with changes in the expression of connexins and remodeling of gap junctions. Such remodeling may have both adaptive and maladaptive consequences and contribute to major clinical processes such as heart failure and sudden cardiac death. Our laboratory has investigated mechanisms regulating cell-cell electrical coupling in the heart under physiological and pathophysiological conditions. This review is focused on selected aspects of this work pertaining to changes in coupling in response to acute and chronic ischemic heart disease and in familial cardiomyopathies caused by mutations in genes encoding desmosomal proteins.  相似文献   

20.
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and β-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.Key words: desmosome, cell-cell adhesion, intercellular junction, tyrosine phosphorylation, pervanadate, desmoglein, plakoglobin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号