首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Expression of the Polyoma Middle T (PyMT) antigen in endothelial cells results in single-step transformation to hemangioma producing malignant cells. To study the mechanism of PyMT transformation, we used the PyMT induced mouse brain endothelial cell line, bEND.3, expressing constitutively active and dominant negative mutants of the small GTPase Rac. The bEND.3 cell phenotype of tumorigenesis, loss of normal growth control and formation of cysts rather than capillary tubes in fibrin gels was reversed by expression of dominant negative Rac. The mechanism of N17 Rac action in blocking the endothelial cell transformant, PyMT, did not involve effects of Rac on the actin cytoskeleton since this component of the bEND.3 cell phenotype was not affected. Furthermore, the PyMT induced activation of the plasminogen activator (PA)/plasmin system was not affected by Rac inhibition. Inhibition of the downstream effectors of Rac, phosphatidylinositol 3-kinase (PI3-K) and p70S6k, which are known to be constitutively activated by PyMT transformation, inhibited bEND.3 cell proliferation and cyst formation in fibrin gels even in cells expressing V12 constitutively active Rac, but they did not restore capillary tube formation. These results demonstrate that middle T antigen induced endothelial cell transformation requires signal transduction by Rac. The downstream Rac effectors, P13-K and p70S6k, mediate PyMT/Rac effects on cell proliferation and cyst formation, but other unknown effectors of PyMT are required for the cytoskeletal changes and activation of the PA/plasmin system.  相似文献   

2.
The middle T antigen of murine Polyomavirus (PymT) rapidly transforms endothelial cells, leading to the formation of vascular tumors in newborn mice. Transformed endothelial (End.) cell lines established from such tumors exhibit altered proteolytic activity as a result of increased expression of urokinase-type plasminogen activator (uPA) and are capable of inducing vascular tumors efficiently when injected into adult mice. In this study we have used mice lacking components of the PA/plasmin system to analyze the role of this system in the transformation process and in tumor growth. We found that the proteolytic status of the host is not a critical determinant for PymT-induced vascular tumor formation. In addition, the lack of either uPA or tissue-type PA (tPA) activity is not limiting for the establishment and proliferation of End. cells in vitro, although the combined loss of both PA activities leads to a marked reduction in proliferation rates. Furthermore, the in vitro morphogenetic properties of mutant End. cells in fibrin gels could only be correlated with an altered proteolytic status in cells lacking both uPA and tPA. However, in contrast with tumors induced by PymT itself, the tumorigenic potential of mutant and wild-type End. cell lines was found to be highly dependent on the proteolytic status of both the tumor cells and the host. Thus, genetic alterations in the PA/plasmin system affect vascular tumor development, indicating that this system is a causal component in PymTmediated oncogenesis.  相似文献   

3.
Human endothelial cells are induced to form an anastomosing network of capillary tubes on a gel of collagen I in the presence of PMA. We show here that the addition of mAbs, AK7, or RMAC11 directed to the alpha chain of the major collagen receptor on endothelial cells, the integrin alpha 2 beta 1, enhance the number, length, and width of capillary tubes formed by endothelial cells derived from umbilical vein or neonatal foreskins. The anti-alpha 2 beta 1 antibodies maintained the endothelial cells in a rounded morphology and inhibited both their attachment to and proliferation on collagen but not on fibronectin, laminin, or gelatin matrices. Furthermore, RMAC11 promoted tube formation in collagen gels of increased density which in the absence of RMAC11 did not allow tube formation. Neither RMAC11 or AK7 enhanced capillary formation in the absence of PMA. Lumen structure and size were also altered by antibody RMAC11. In the absence of antibody the majority of lumina were formed intracellularly from single cells, but in the presence of RMAC11, multiple cells were involved and the lumen size was correspondingly increased. Endothelial cells were also induced to undergo capillary formation in fibrin gels after PMA stimulation. The addition of anti-alpha v beta 3 antibodies promoted tube formation in fibrin gels and inhibited EC adhesion to and proliferation on a fibrinogen matrix. The enhancement of capillary formation by the anti- integrin antibodies was matrix specific; that is, anti-alpha v beta 3 antibodies only enhanced tube formation on fibrin gels and not on collagen gels while anti-alpha v beta 1 antibodies only enhanced tubes on collagen and not on fibrin gels. Thus we postulate that changes in the adhesive nature of endothelial cells for their extracellular matrix can profoundly effect their function. Anti-integrin antibodies which inhibit cell-matrix interactions convert endothelial cells from a proliferative phenotype towards differentiation which results in enhanced capillary tube formation.  相似文献   

4.
During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood.

Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF.

These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.  相似文献   

5.
Fibrin II induces endothelial cell capillary tube formation   总被引:11,自引:0,他引:11       下载免费PDF全文
We studied the formation of capillary tubes by endothelial cells which were sandwiched between two fibrin gels under serum-free conditions. After formation of the overlying fibrin gel, the endothelial cell monolayer rearranged into an extensive net of capillary tubes. Tube formation was apparent at 5 h and was fully developed by 24 h. The capillary tubes were vacuolated, and both intracellular and intercellular lumina were present. Maximal tube formation was observed with fibrin II (which lacks both fibrinopeptide A and B), minimal tube formation with fibrin I (which lacks only fibrinopeptide A), and complete absence of tube formation with fibrin 325 (which lacks the NH2- terminal beta 15-42 sequence, in addition to fibrinopeptides A and B). The inability of fibrin 325 to stimulate capillary tube formation supports the idea that beta 15-42 plays an important role in this process, and its importance was confirmed by the finding that exogenous soluble beta 15-42 inhibited fibrin II-induced capillary tube formation. This effect was specific for fibrin, since beta 15-42 did not inhibit tube formation by endothelial cells sandwiched between collagen gels. The interaction of the apical surface of the endothelial cell with the overlying fibrin II gel, as opposed to the underlying fibrin gel upon which the cells were seeded, was necessary for capillary tube formation. These studies suggest that the beta 15-42 sequence of fibrin interacts with a component of the apical cell surface and that this interaction plays a fundamental role in the induction of endothelial capillary tube formation.  相似文献   

6.
Rac Regulates Vascular Endothelial Growth Factor Stimulated Motility   总被引:4,自引:0,他引:4  
During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood.

Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF.

These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.  相似文献   

7.
TGFbeta is a potent regulator of cell differentiation in many cell types. On aortic endothelial cells, TGFbeta1 displays angiogenic properties in inducing capillary-like tube formation in collagen I gels, in vitro. We investigated cytoskeletal changes that precede tube formation and related these alterations to the effects of TGFbeta1 on the activation state of members of the RhoGTPase family. TGFbeta1 promotes cell elongation and stress fiber formation in aortic endothelial cells. Using cell lines with inducible expression of Rac1 mutants, we show that these events are mimicked by expression of dominant-negative Rac1 whereas the constitutively active mutant prevents the TGFbeta1-mediated change of phenotype. Although TGFbeta1 induces an initial rise in the Rac1-GTP content, this phase is followed by a prolonged loss of the active form. In contrast, RhoA activity increases progressively and reaches a plateau when Rac1-GTP is no longer detectable. Prolonged inhibition of Rac1 appears necessary and sufficient for the increase in RhoA-GTP. In situ examination of Rho activity in TGFbeta1-treated cells provides evidence that active RhoA relocalizes to the tips of elongated cells. Inhibiting the Rho effector ROCK abrogates tube formation. Thus, Rac1 and RhoA are regulated by TGFbeta1 in the process of endothelial tube formation in collagen I gels.  相似文献   

8.
BACKGROUND: Dendritic cells use constitutive macropinocytosis to capture exogenous antigens for presentation on MHC molecules. Upon exposure to inflammatory stimuli or bacterial products such as lipopolysaccharide (LPS), macropinocytosis is dramatically downregulated as part of a developmental programme leading to dendritic cell maturation, migration and activation of T cells. It is not known, however, how macropinocytosis is sustained in dendritic cells in the absence of exogenous stimuli, nor how it is downregulated upon maturation. We have tested the possibility that one or more members of the Rho family of GTPases are involved in and control pinocytosis in dendritic cells. RESULTS: We established dendritic cell populations that show constitutive macropinocytosis that was downregulated by LPS treatment. Microinjection of immature cells with dominant-negative Rac (N17Rac1) or treatment with Clostridium difficile toxin B, the phosphoinositide 3-kinase (PI3-K) inhibitor wortmannin, or LPS all inhibited the formation of macropinosomes but, surprisingly, did not eliminate membrane ruffling. Microinjection of N17Cdc42 or the Rho inhibitor C3 transferase eliminated actin plaques/podosomes and actin cables, respectively, but had little effect on the formation of macropinosomes. Surprisingly, dendritic cells matured with LPS had equivalent or even somewhat higher levels of active Rac than immature cells. Moreover, microinjection of a constitutively active form of Rac (V12Rac1) into mature dendritic cells did not reactivate macropinocytosis. CONCLUSIONS: Rac has an important role in the constitutive formation of macropinosomes in dendritic cells but may be required downstream of membrane ruffling. Furthermore, regulation of Rac activity does not appear to be the control point in the physiological downregulation of dendritic cell pinocytosis. Instead, one or more downstream effectors may be modulated to allow Rac to continue to regulate other cellular functions.  相似文献   

9.
H A Chapman  Z Vavrin  J B Hibbs 《Cell》1982,28(3):653-662
Endotoxin-stimulated macrophages hydrolyze fibrin by a plasmin-mediated process in the absence of detectable soluble plasminogen activator (PAs). The data show that macrophages also activate plasmin by a membrane-associated plasminogen activator (PAm). In the presence of endotoxin, PAm activity increases, and plasmin is formed only by PAm. In addition, endotoxin stimulates macrophages to secrete a proteinase inhibitor that blocks PAs activity but not PAm or plasmin activity. The increased PAm activity and the PA inhibitor secretion in response to endotoxin explains the ability of intact macrophages to hydrolyze fibrin in the absence of detectable PAs. Endotoxin, 100 ng/ml, induced an intracellular PA inhibitor in cultured macrophages, and this correlated with accumulation of inhibitor in medium over the cells. The intracellular PA inhibitor was found to be 50--60 kilodaltons by gel chromatography, to be of anionic charge at pH 7.4 and to inhibit urokinase esterolytic and proteolytic activity but not preformed plasmin. These results define two pathways of plasmin formation by intact macrophages and identify the macrophage cell surface as a site of PA activity relatively protected from soluble proteinase inhibitors.  相似文献   

10.
Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.  相似文献   

11.
Various cell adhesion molecules mediate the diverse functions of the vascular endothelium, such as cell adhesion, neutrophil migration, and angiogenesis. In order to identify cell adhesion molecules important for angiogenesis, we used anin vitromodel (Chalupowicz, Chowdhury, Bach, Barsigian, and Martinez,J. Cell Biol.130, 207–215, 1995) in which human umbilical vein endothelial cell monolayers are induced to form capillary-like tubes when a second gel, composed of either fibrin or collagen, is formed overlying the apical surface. In the present investigation, we observed that a monoclonal antibody directed against the first extracellular domain of human vascular endothelial cadherin (VE-cadherin, cadherin 5) inhibited the formation of capillary tubes formed between either fibrin or collagen gels. Moreover, when added to preformed capillary tubes, this antibody disrupted the capillary network. In contrast, monoclonal antibodies directed against the extracellular domain of N-cadherin, the αvβ3integrin, and PECAM-1 failed to inhibit capillary tube formation. During capillary tube formation, Western blot and RT-PCR analysis revealed no marked change in VE-cadherin expression. Immunocytochemical studies demonstrated that VE-cadherin was concentrated at intercellular junctions in multicellular capillary tubes. Thus, VE-cadherin plays a specific role in fibrin-induced or collagen-induced capillary tube formation and is localized at areas of intercellular contact where it functions to maintain the tubular architecture. Moreover, its function at tubular intercellular junctions is distinct from that at intercellular junctions present in confluent monolayers, since only the former was inhibited by monoclonal antibodies.  相似文献   

12.
Rac GTPases control cell shape by regulating downstream effectors that influence the actin cytoskeleton. UNC-115, a putative actin-binding protein similar to human abLIM/limatin, has previously been implicated in axon pathfinding. We have discovered the role of UNC-115 as a downstream cytoskeletal effector of Rac signaling in axon pathfinding. We show that unc-115 double mutants with ced-10 Rac, mig-2 Rac or unc-73 GEF but not with rac-2/3 Rac displayed synthetic axon pathfinding defects, and that loss of unc-115 function suppressed the formation of ectopic plasma membrane extensions induced by constitutively-active rac-2 in neurons. Furthermore, we show that UNC-115 can bind to actin filaments. Thus, UNC-115 is an actin-binding protein that acts downstream of Rac signaling in axon pathfinding.  相似文献   

13.
There is now considerable experimental evidence that aberrant activation of Rho family small GTPases promotes the uncontrolled proliferation, invasion, and metastatic properties of human cancer cells. Therefore, there is considerable interest in the development of small molecule inhibitors of Rho GTPase function. However, to date, most efforts have focused on inhibitors that indirectly block Rho GTPase function, by targeting either enzymes involved in post-translational processing or downstream protein kinase effectors. We recently determined that the EHT 1864 small molecule can inhibit Rac function in vivo. In this study, we evaluated the biological and biochemical specificities and biochemical mechanism of action of EHT 1864. We determined that EHT 1864 specifically inhibited Rac1-dependent platelet-derived growth factor-induced lamellipodia formation. Furthermore, our biochemical analyses with recombinant Rac proteins found that EHT 1864 possesses high affinity binding to Rac1, as well as the related Rac1b, Rac2, and Rac3 isoforms, and this association promoted the loss of bound nucleotide, inhibiting both guanine nucleotide association and Tiam1 Rac guanine nucleotide exchange factor-stimulated exchange factor activity in vitro. EHT 1864 therefore places Rac in an inert and inactive state, preventing its engagement with downstream effectors. Finally, we evaluated the ability of EHT 1864 to block Rac-dependent growth transformation, and we determined that EHT 1864 potently blocked transformation caused by constitutively activated Rac1, as well as Rac-dependent transformation caused by Tiam1 or Ras. Taken together, our results suggest that EHT 1864 selectively inhibits Rac downstream signaling and transformation by a novel mechanism involving guanine nucleotide displacement.  相似文献   

14.
Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef/ mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury.  相似文献   

15.
Fibrinolytic system is one of the major proteolytic pathways in vivo and primarily responsible for dissolution of thrombi. Two enzymes are primarily involved in this proteolytic system; plasminogen activator (PA) and plasmin. Plasmin is formed by a limited proteolysis of plasminogen by PA, which is mainly synthesized by and secreted from vascular endothelial cells. This proteolytic process proceeds physiologically only on the surface of fibrin. Thus, initiation and progression of the fibrinolytic process depend on the function of endothelial cells and fibrin formation. Endothelial cells may also synthesize and excrete PA inhibitor (PAI) which inhibits immediately, PA once released. The rates of synthesis and excretion of PA and PAI by endothelial cells are regulated by various factors. Among them, thrombin stimulates the release of PA whereas activated protein C may decrease the release of PAI. Thus, both enzymes enhance fibrinolytic potential. PA which has escaped from inhibition by PAI binds to fibrin. 2-Plasmin inhibitor (2PI) inhibits the binding of plasminogen to fibrin, thereby suppressing this fibrin-associated plasminogen activation. A part of 2PI is cross-linked to fibrin by activated factor XIII when fibrin is formed, and the 2PI thus cross-linked to fibrin inhibits in situ plasmin formed on fibrin. Thus, 2PI as well as PAI plays a central role in inhibition of fibrinolysis.  相似文献   

16.
Endothelial cell transition from a differentiated, quiescent phenotype to a migratory, proliferative phenotype is essential during angiogenesis. This transition is dependent on alterations in the balanced production of stimulatory and inhibitory factors, which normally keep angiogenesis in check. Activation of MAPK/ERKs is essential for endothelial cell migration and proliferation. However, its role in regulation of endothelial cell adhesive mechanisms requires further delineation. Here, we show that sustained activation of MAPK/ERKs results in disruption of cadherin-mediated cell-cell adhesion, down-regulation of PECAM-1 expression, and enhanced cell migration in microvascular endothelial cells. Expression of a constitutively active MEK-1 in mouse brain endothelial (bEND) cells resulted in down-regulation of VE-cadherin and catenins expression concomitant with down-regulation of PECAM-1 expression. In contrast, inhibition of MEK-1 restored parental morphology, cadherin/catenins expression and localization. These data are further supported by our observation that sustained activation of MAPK/ERKs in phorbol myristate acetate incubated HUVEC lead to disruption of cadherin-mediate cell-cell interactions and enhanced capillary formation on Matrigel. Thus, sustained activation of MAPK/ERKs plays an important role in disruption of cell-cell adhesion and migration of endothelial cells.  相似文献   

17.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   

18.
The Rho GTPases Rac1 and Cdc42 have been implicated in the regulation of axon outgrowth and guidance. However, the downstream effector pathways through which these GTPases exert their effects on axon development are not well characterized. Here, we report that axon outgrowth defects within specific subsets of motoneurons expressing constitutively active Drosophila Rac1 largely persist even with the addition of an effector-loop mutation to Rac1 that disrupts its ability to bind to p21-activated kinase (Pak) and other Cdc42/Rac1 interactive-binding (CRIB)-motif effector proteins. While hyperactivation of Pak itself does not lead to axon outgrowth defects as when Rac1 is constitutively activated, live analysis reveals that it can alter filopodial activity within specific subsets of neurons similar to constitutive activation of Cdc42. Moreover, we show that the axon guidance defects induced by constitutive activation of Cdc42 persist even in the absence of Pak activity. Our results suggest that (1) Rac1 controls axon outgrowth through downstream effector pathways distinct from Pak, (2) Cdc42 controls axon guidance through both Pak and other CRIB effectors, and (3) Pak's primary contribution to in vivo axon development is to regulate filopodial dynamics that influence growth cone guidance.  相似文献   

19.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

20.
Ras-induced cell transformation is mediated through distinct downstream signaling pathways, including Raf, Ral-GEFs-, and phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. In some cell types, strong activation of the Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) cascade leads to cell cycle arrest rather than cell division. We previously reported that constitutive activation of this pathway induces sustained proliferation of primary cultures of postmitotic chicken neuroretina (NR) cells. We used this model system to investigate the respective contributions of Ras downstream signaling pathways in Ras-induced cell proliferation. Three RasV12 mutants (S35, G37, and C40) which differ by their ability to bind to Ras effectors (Raf, Ral-GEFs, and the p110 subunit of PI 3-kinase, respectively) were able to induce sustained NR cell proliferation, although none of these mutants was reported to transform NIH 3T3 cells. Furthermore, they all repressed the promoter of QR1, a neuroretina growth arrest-specific gene. Overexpression of B-Raf or activated versions of Ras effectors Rlf-CAAX and p110-CAAX also induced NR cell division. The mitogenic effect of the RasC40-PI 3-kinase pathway appears to involve Rac and RhoA GTPases but not the antiapoptotic Akt (protein kinase B) signaling. Division induced by RasG37-Rlf appears to be independent of Ral GTPase activation and presumably requires an unidentified mechanism. Activation of either Ras downstream pathway resulted in ERK activation, and coexpression of a dominant negative MEK mutant or mKsr-1 kinase domain strongly inhibited proliferation induced by the three Ras mutants or by their effectors. Similar effects were observed with dominant negative mutants of Rac and Rho. Thus, both the Raf-MEK-ERK and Rac-Rho pathways are absolutely required for Ras-induced NR cell division. Activation of these two pathways by the three distinct Ras downstream effectors possibly relies on an autocrine or paracrine loop, implicating endogenous Ras, since the mitogenic effect of each Ras effector mutant was inhibited by RasN17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号