首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal organization of platelet microtubules is associated with abnormal platelet formation in hereditary macrothrombocytopenias such as the gray platelet syndrome, May-Hegglin anomaly, and Epstein's syndrome, and that of the Wistar Furth rat, suggesting that aberrant microtubule organization may contribute to defective platelet formation in these clinical entities. Here, we examined the consequence of microtubule disruption on the organization of megakaryocyte cytoplasmic organelles using the microtubule depolymerizing agent, vincristine (VCR). Wistar rat bone marrow was fixed and processed for transmission electron microscopy after VCR administration alone, after 5-fluorouracil (5-FU) administration alone, or after 5-FU followed by intravenous injection of 0.1–1.0 mg/kg VCR for intervals of 30 min to 8 hr. 5-FU was given to increase megakaryocyte frequency to facilitate ultrastructural evaluations. VCR alone or in combination with 5-FU caused formation of large membrane complexes in the cytoplasm of Wistar rat megakaryocytes at all dosages studied, identical to those found in megakaryocytes of human hereditary macrothrombocytopenias and the Wistar Furth rat. The proportion of megakaryocytes with these large membrane complexes increased with time after 5-FU and VCR, and was maximal (~two-third of megakaryocytes) at VCR dosages of 0.75–1.0 mg/kg. The majorityof megakaryocytes displayed other abnormalities, including blebbing of plasma membranes, an increased number of dense compartments, dilated demarcation membrane (DMS) channels, which contained dense material immunocytochemically identified as secreted α-granule proteins, and an increased incidence of emperipolesis. Rats administered 5-FU alone did not demonstrate these abnormalities, with the exception of an increase in dense compartments. Platelets from rats treated with VCR aloene or 5-FU and VCR also showed abnormalities including membrane complexes, rounded shape, formation of tubulin paracrystals, development of membrane blebs, and the presence of proteinaceous material within the cisternae of the surface-connected canalicular system (SCCS). The membrane complexes in platelets of 5-FU-, VCR-treated Wistar rats as well as untreated Wistar Furth rats were composed of elements of both the SCCS and dense tubular system; membrane complexes in megakaryocytes of 5-FU-, VCR-treated rats were composed of both DMS and smooth endoplasmic reticulum. We conclude that intact microtubules play a major role in the organization of the megakaryocyte DMS and may contribute to the stability of megakaryocyte α-granules. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The Wistar Furth (WF) rat has a hereditary defect in platelet formation that resembles gray platelet syndrome of man with a large mean platelet volume and platelet alpha granule deficiency. The alpha granule abnormality is suggestive of a defect in granule packaging and/or stability. Proteoglycans are hypothesized to play a role in granule packaging. Therefore, we have analyzed the structure of the platelet proteoglycan, serglycin, in platelets of WF and normal Wistar rats. Normal and Wistar Furth rats were injected with 35S-sulfate to label platelet proteoglycans via synthesis by the megakaryocytes, and platelets were isolated 3 days later. We found that WF rat platelets have only one-third of the normal proteoglycan mass per unit platelet volume, and the proteoglycans are smaller in hydrodynamic size with shorter glycosaminoglycan chains than those of Wistar rats. However, WF rat platelet proteoglycans showed no defect in binding to collagen on affinity coelectrophoresis gels. We conclude that the structure of WF rat platelet proteoglycans is abnormal, and speculate that this abnormality may contribute to abnormal packaging of the alpha granule contents. Leakage of alpha granule contents into the marrow by platelets and megakaryocytes could perturb the marrow matrix, and promote the development of myelofibrosis noted in gray platelet syndrome. J. Cell. Physiol. 172:87–93, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Biochemical and functional abnormalities of megakaryocytes and platelets were studied in Wistar Furth (WF) rats which have genetically determined macrothrombocytopenia and megakaryocytopenia, and were compared with their counterparts in Sprague-Dawley (SD) rats. Both megakaryocytes and platelets synthesized phospholipids from [14C]acetate. WF and SD megakaryocytes incorporated 0.27 and 0.29 nmol acetate per 10(6) cells, respectively. Phosphatidylcholine (PC) accounted for 64% and 58% of the PL radioactive label in megakaryocytes of SD and WF rats, respectively, (P less than 0.05), while 69% of labeled activity was associated with PC of SD platelets compared to 60% found in PC of WF platelets (P less than 0.01). In WF platelets a significant increase in the levels of lysophosphatidylcholine (6.1% vs. 3.0%) was observed. WF platelets had substantially higher levels of esterified cholesterol, triglycerides, ceramides and a 3-fold increase in the total protein per platelet compared to SD platelets. The fatty acid composition of WF platelet PC showed quantitative abnormalities. Plasma lecithin-cholesterol acyl transferase activity and platelet function monitored by the uptake and release of [14C] serotonin showed nonsignificant variations between SD and WF rats. Compared with the control, platelet membrane fluidity, measured by fluorescence polarization using platelets labeled with 1,6-diphenyl-1,3,5-hexatriene, was significantly decreased in the WF rats.  相似文献   

4.
Freeze-fracture and thin-section electron microscopy indicate that a sequence of fusion-fission leads to reorganization of membranes and the demarcation of platelets within the cytoplasm of megakaryocyte. Invagination of the megakaryocyte plasma membrane leads to the formation of tubular structures within the cytoplasm of megakaryocytes. Fusion of these tubular membranes in the plane of their long axes is followed by fission in the perpendicular plane. This results in the formation of two flat membranes, forming plasma membranes of two adjacent platelets. A similar fusion-fission reorganization of membranes could mediate a wide variety of other biologic phenomena. These observations also indicate that megakaryocytes are located in the subendothelial compartment of the marrow with their projections penetrating the endothelium and reaching the lumen. This direct contact with the circulation may serve as a means of receiving information as to the requirements of the body for platelet production.  相似文献   

5.
Three-dimensional images of the undercoat structure on the cytoplasmic surface of the upper cell membrane of normal rat kidney fibroblast (NRK) cells and fetal rat skin keratinocytes were reconstructed by electron tomography, with 0.85-nm-thick consecutive sections made approximately 100 nm from the cytoplasmic surface using rapidly frozen, deeply etched, platinum-replicated plasma membranes. The membrane skeleton (MSK) primarily consists of actin filaments and associated proteins. The MSK covers the entire cytoplasmic surface and is closely linked to clathrin-coated pits and caveolae. The actin filaments that are closely apposed to the cytoplasmic surface of the plasma membrane (within 10.2 nm) are likely to form the boundaries of the membrane compartments responsible for the temporary confinement of membrane molecules, thus partitioning the plasma membrane with regard to their lateral diffusion. The distribution of the MSK mesh size as determined by electron tomography and that of the compartment size as determined from high speed single-particle tracking of phospholipid diffusion agree well in both cell types, supporting the MSK fence and MSK-anchored protein picket models.  相似文献   

6.
Counterflow centrifugal elutriation and Percoll density gradient centrifugation were employed to prepare cell populations from rat bone marrow that were selectively enriched in the cytoplasmically immature megakaryocytes and depleted of the most mature megakaryocytes. The incorporation of [14C]leucine into the platelet-specific alpha-granule protein, platelet factor 4, as well as the incorporation of [35S]sulfate into platelet proteoglycans synthesized by the maturing megakaryocytes were monitored as markers of cytoplasmic maturation. Rat platelet factor 4 was specifically isolated and characterized by its high affinity for heparin-Sepharose and its amino-terminal sequence homology to human and rabbit platelet factor 4. The [35S]sulfate-labeled proteoglycans were primarily composed of chondroitin 4-sulfate glycosaminoglycans and were identified as platelet granule components by their ability to be secreted by megakaryocytes in response to thrombin or A23187. The production of both components was increased as much as 3-fold in a dose-dependent manner by the addition of picomolar concentrations of purified megakaryocyte stimulatory factor, without a concomitant increase in general protein synthesis. The above results suggest that the megakaryocyte stimulatory factor may regulate the synthesis of platelet granule components by megakaryocytes and hence control the rate and/or extent of cytoplasmic maturation during megakaryocyte development.  相似文献   

7.
One important element that defines cell shape is the membrane skeleton. This filamentous network is closely apposed to the cytoplasmic face of the plasma membrane where it gives mechanical support to the membrane, provides specific attachment sites for cytoskeletal components and helps to organize some integral membrane proteins into domains. The membrane skeleton of erythrocytes has been studied extensively by biochemical and ultrastructural methods, but similar structures in other cell types are just beginning to be defined. In this review, David Pumplin and Robert Bloch draw attention to these nonerythroid skeletons and compare and contrast them with the erythrocyte model.  相似文献   

8.
The ultrastructural changes in electropermeabilized bovine platelets that accompany the Ca2(+)-induced secretion of serotonin were investigated in ultra-thin sections of chemically fixed cells. Such preparations permitted us to study both the localization of and the structures associated with serotonin-containing dense granules. Localization of dense granules within cells was examined by measuring the shortest distances between the granular membranes and the plasma membrane. About 40% of total granules were located close to the plasma membrane at an average distance of 10.8 +/- 1.6 nm. 71% of the total number of granules were localized at a similar average distance of 12.5 +/- 2.7 nm in intact platelets. The percentage of granules apposed to the plasma membrane corresponded closely to the percentage of total serotonin that was maximally secreted after stimulation of the permeabilized (38 +/- 4.9%) and the intact platelets (72 +/- 3.6%). Furthermore, the percentage of granules anchored to the membrane, but not of those in other regions of permeabilized cells, decreased markedly when cells were stimulated for 30 s by extracellularly added Ca2+. The decrease in the numbers of granules in the vicinity of the plasma membrane corresponded to approximately 22% of the total number of dense granules that were used for measurements of the distances between the two membranes and corresponded roughly to the overall decrease (15%) in the average number of the granules per cell. Most dense granules were found to be associated with meshwork structures of microfilaments. Upon secretory stimulation, nonfilamentous, amorphous structures found between the plasma membrane and the apposed granules formed a bridge-like structure that connected both membranes without any obvious accompanying changes in the microfilament structures. These results suggest that the dense granules that are susceptible to secretory stimulation are anchored to the plasma membrane before stimulation, and that the formation of the bridge-like structure may participate in the Ca2(+)-regulated exocytosis.  相似文献   

9.
This study examines the question of whether the aspirin-induced delay in the recovery of platelet cyclooxygenase pathway activity, as measured by RIA of thromboxane B2, results from a direct effect on megakaryocyte cyclooxygenase. From our measurement of recovery of TXB2 and information on megakaryocyte transit time in rats, we propose that thromboxane synthesis may represent a relatively late step in the differentiation of megakaryocytes. Megakaryocyte thromboxane production was depressed by 70% and that of platelets by 85% at two hr after 20 mg/kg oral aspirin dissolved in DMSO. Full megakaryocyte thromboxane recovery occurred by 72 hr and preceded complete platelet thromboxane recovery by 24 hr. Whereas megakaryocyte thromboxane synthesis showed substantial recovery by 36 hr after aspirin, platelet recovery did not begin for 24 hr and achieved a maximal recovery rate over the following 12 hr. This finding is consistent with predictions based upon human data for both megakaryocyte labeling studies and post-aspirin platelet recovery. We conclude from our data and from estimates of megakaryocyte maturation times in marrow, that thromboxane synthesis develops in rat megakaryocytes after approximately 48 hr of cytoplasmic differentiation toward platelet shedding. This metabolic capacity therefore serves as a marker of megakaryocyte differentiation.  相似文献   

10.
In order to determine whether or not proteins circulating in plasma can be incorporated into megakaryocytes and platelets, horseradish peroxidase (HRP) was injected intravenously into guinea pigs and these cells were examined for uptake by cytochemistry and electron microscopy. Enriched samples of megakaryocytes enabled ultrastructural analysis of large numbers of these rare bone marrow cells. In megakaryocytes, more than 50% of alpha granules contained HRP between 75 minutes and 7 hours after injection. At 24 hours, 25% of the megakaryocyte granules were peroxidase positive; less were so by 48 hours and none at 4 days. Thus, the findings demonstrate that a circulating protein can be endocytosed by megakaryocytes and rapidly packaged into alpha granules. A precipitous drop in circulating platelet numbers was observed 45 minutes after injection. At this time, circulating platelets showed the tracer only on the platelet plasma membrane, and none in platelet granules. Platelet numbers increased to 35% by 7 hours and only the platelet granules contained HRP. These platelets secreted the HRP stored in granules in response to thrombin. Unfortunately, our present studies do not allow us to distinguish between direct endocytosis by the platelet and/or shedding of new platelets from recently labeled megakaryocytes. Our studies are the first to demonstrate an endocytic pathway by which megakaryocytes can incorporate a circulating protein into alpha granules. An important physiologic implication of this endocytic pathway is the possible origin of certain alpha granule proteins from plasma.  相似文献   

11.
The events of myoblast fusion in Drosophila are dissected here by combining genetic analysis with light and electron microscopy. We describe a new and essential intermediate step in the process, the formation of a prefusion complex consisting of “paired vesicles.” These pairs of vesicles from different cells align with each other across apposed plasma membranes. This prefusion complex resolves into dense membrane plaques between apposed cells; these cells then establish cytoplasmic continuity by fusion of small areas of plasma membrane followed by vesiculation of apposed membranes. Different steps in this process are specifically blocked by mutations in four genes required for myoblast fusion. One of these genes, blown fuse, encodes a novel cytoplasmic protein expressed in unfused myoblasts that is essential for progression beyond the prefusion complex stage.  相似文献   

12.
In human monocyte-derived macrophages (MDM), human immunodeficiency virus type 1 (HIV-1) assembly takes place primarily on complex intracellular plasma membrane domains connected to the cell surface by closely apposed membrane sheets or narrow channels. Some of the membranes associated with these compartments are decorated by thick (≈30 nm), electron-dense, cytoplasmic coats. Here we show by immunolabelling of ultrathin cryosections that the β2 integrin CD18, together with the αM and αX integrins (CD11b and CD11c), is clustered at these coated domains, and that the coats themselves contain the cytoskeletal linker proteins talin, vinculin and paxillin that connect the integrin complexes to the actin cytoskeleton. Intracellular plasma membrane-connected compartments (IPMC) with CD18-containing focal adhesion-like coats are also present in uninfected MDM. These compartments become more prominent as the cells mature in tissue culture and their appearance correlates with increased expression of CD18, CD11b/c and paxillin. Depletion of CD18 by RNA interference leads to parallel down-regulation of CD11b and CD11c, as well as of paxillin, and the disappearance of the adhesion-like coats. In addition, CD18 knockdown alters the appearance of virus-containing IPMC in HIV-infected MDM, indicating that the β2 integrin/focal adhesion-like coat structures are involved in the organization of these compartments.  相似文献   

13.
RhoA plays a multifaceted role in platelet biology. During platelet development, RhoA has been proposed to regulate endomitosis, proplatelet formation, and platelet release, in addition to having a role in platelet activation. These processes were previously studied using pharmacological inhibitors in vitro, which have potential drawbacks, such as non-specific inhibition or incomplete disruption of the intended target proteins. Therefore, we developed a conditional knockout mouse model utilizing the CRE-LOX strategy to ablate RhoA, specifically in megakaryocytes and in platelets to determine its role in platelet development. We demonstrated that deleting RhoA in megakaryocytes in vivo resulted in significant macrothrombocytopenia. RhoA-null megakaryocytes were larger, had higher mean ploidy, and exhibited stiff membranes with micropipette aspiration. However, in contrast to the results observed in experiments relying upon pharmacologic inhibitors, we did not observe any defects in proplatelet formation in megakaryocytes lacking RhoA. Infused RhoA-null megakaryocytes rapidly released platelets, but platelet levels rapidly plummeted within several hours. Our evidence supports the hypothesis that changes in membrane rheology caused infused RhoA-null megakaryocytes to prematurely release aberrant platelets that were unstable. These platelets were cleared quickly from circulation, which led to the macrothrombocytopenia. These observations demonstrate that RhoA is critical for maintaining normal megakaryocyte development and the production of normal platelets.  相似文献   

14.
The ultrastructural cytochemical localization of a potassium-dependent oubain-sensitive nitrophenyl phosphatase (transport ATPase) activity in human blood platelets is described. This potassium-dependent nitrophenyl phosphatase activity was not affected by 5 mM levamisole, indicating that the reaction product identified was not due to nonspecific alkaline phosphatase activity. The K+-dependent nitrophenyl phosphatase was strictly localized to the platelet plasma membrane, while the open canalicular system and dense tubular system were devoid of reaction product. In contrast, (Ca2+,Mg2+)-activated ATPase activity was predominantly localized in the open canalicular system and dense tubular system with very little cytochemical activity expressed at the plasma membrane. These data demonstrate a relative segregation of these enzymes into unique membrane compartments of the human platelet. Such data may be useful with regard to identification of purified membrane fractions from platelets and may be significant with regard to the understanding of the function(s) of the different membrane compartments of the human platelet.  相似文献   

15.
In sections of KMnO(4)-fixed, developing mouse sciatic nerves, the central gap of mesaxons in myelinating fibers is normally closed with close apposition of the outside approximately 20 A dense strata of the two approximately 75 A Schwann cell membranes. The two combined outside strata make the intraperiod line bisecting each myelin lamella. The approximately 150 A mesaxon is elaborated spirally around the axon in either a right hand or left hand spiral, and its inside (cytoplasmic) approximately 20 A strata in apposition form the major dense lines of myelin. In hypotonic solutions the lamellae of adult frog sciatic myelinated fibers split apart along the outside membrane strata apposed at the intraperiod line throughout the spiral. Under similar conditions the inside (cytoplasmic) strata of the membranes, in apposition at the major dense lines, do not separate. The approximately 150 A membranous structure resulting from this is called an "internal compound membrane." The double membranes of normal and control frog sciatic unmyelinated fibers have a central gap approximately 100 to 150 A wide. After soaking in 4 to 10 times normal strength Ringer solution or 10 N sucrose-Ringer solution, this gap closes and a membranous structure approximately 150 A wide resembling developing mouse mesaxons results. This is designated by the term "external compound membrane." The latter membranes resemble internal compound membranes, but their central dense zones, each consisting of two apposed outside membrane strata, are less dense.  相似文献   

16.
A combined morphometric and ultrastructural study was performed on so called emperipolesis or internal wandering of myeloid cells in the cytoplasm of large mature megakaryocytes. Measurements were made on material from a total of 115 patients comprising a normal control group and 5 groups with subtypes of chronic myeloproliferative diseases, including primary (essential, idiopathic) thrombocythemia (PTH). A significant increase in this peculiar phenomenon was noted in myeloproliferative disorders and especially in PTH where the frequency of emperipolesis showed a positive correlation with the number of anuclear cytoplasmic fragments sectioned, with the circular deviation of the shapes of megakaryocytes and with the extent to which the peripheral thrombocyte count was elevated. Electron microscopy in selected cases displayed the integrity of the plasma membranes of engulfed hematopoietic cells within the dilated cavities of the megakaryocytic demarcation membrane system (DMS) and no evidence of phagocytosis. Moreover there was a close relationship between engulfed myeloid cells and the presumptive sites of platelet shedding which had their openings from the cisternal lumina of the DMS. Our results demonstrate that emperipolesis of hematopoietic cells within megakaryocytes should not be regarded as a special nosological feature, but as an indication of enforced thrombocytogenetic activity which is expressed particularly in PTH.  相似文献   

17.
S Ebbe 《Blood cells》1989,15(1):254-257
Animals with hereditary abnormalities of hematopoiesis are quite useful in the study of regulatory pathways of megakaryocytopoiesis and platelet formation. Seven such animal models are analyzed here. The Wistar Furth rat has been recently discovered to have reduced platelet number, but large mean platelet volume, and is, therefore, a model of hereditary macrothrombocytopenia. Study of the Wistar Furth rat may help to elucidate the process of platelet formation. Two mouse mutants the S1/S1d and W/Wv, have macrocytic anemia with reduced megakaryocyte number, but normal platelet count. In these mice, the platelet count is maintained by increased platelet production per megakaryocyte. These models demonstrate that factors other than platelet level are monitored in the feedback regulation of megakaryocytopoiesis and platelet production, and further study should lead to a better understanding of the regulation of megakaryocyte size. The Belgrade rat has severe microcytic anemia with decreased megakaryocyte number. Megakaryocyte size is increased, but platelet count is moderately reduced and thus the megakaryocyte-platelet picture resembles that of severe iron deficiency anemia. A more in depth examination of this model should delineate the effects of iron deficiency and hypoxia on megakaryocytopoiesis. The grey collie dog has cyclic hematopoiesis with large asynchronous fluctuations in all blood cell counts at approximately 2-week intervals. Megakaryocytes have not been studied. This model should be a tool to define the relationships between hematopoietic growth factors and differentiation of the various hematopoietic cell lineages. The br/br rabbit has a transient disturbance in fetal megakaryocytopoiesis and brachydactyly due to spontaneous amputation. Further study of this model may provide a better understanding of fetal megakaryocyte development and establish whether an association exists between the abnormal megakaryocytes and the limb amputations. The nude mouse with its severe T-lymphocyte deficiency has been studied to ascertain whether T cells play a regulatory role in normal and acute thrombocytopenia-stimulated megakaryocytopoiesis. The question of whether T cells or their products are responsible for reactive thrombocytosis in chronic inflammation could be examined with this model. These animal mutants have provided and should continue to provide important models for understanding the regulation of megakaryocytopoiesis and platelet production.  相似文献   

18.
The first goal of the present studies was to determine if Sl/Sld megakaryocytes have features in common with the macrocytic megakaryocytes that genetically normal mice produce in response to acute platelet depletion. The second was to test the hypothesis that megakaryocyte abnormalities in Sl/Sld mice are due to genetically determined hemopoietic stromal cell abnormalities. Sizes and ploidies of mature Sl/Sld megakaryocytes were measured. Macrocytosis and a shift to higher ploidy values were found compared with normal. Within ploidy groups 16N-64N, Sl/Sld megakaryocytes were larger than normal megakaryocytes of the same ploidy. Transmission electron microscopy revealed that Sl/Sld megakaryocyte nuclei contain more and larger nucleoli, and the chromatin was more dispersed than in normal megakaryocyte nuclei of comparable maturity. Asynchronous megakaryocyte cytoplasmic maturation was found. Sl/Sld macrophages were also ultrastructurally abnormal. Megakaryocytic macrocytosis was reproduced in long-term bone marrow cultures in which the adherent layer was formed by Sl/Sld cells. It was the same if cultures were recharged with Sl/Sld or +/+ hemopoietic cells. Previously reported ambiguities in mixed cell cultures were avoided by recharging the adherent layers with only a million cells. These results were correlated with previously published observations. Sl/Sld megakaryocytes have features in common with megakaryocytes from acutely thrombocytopenic animals. One feature, macrocytosis, appears to be due to abnormal Sl/Sld stromal cells that are reproduced as adherent layer cells in long-term cultures. The responsible stromal cells in Sl/Sld mice may be counterparts of megakaryocytopoietic regulatory cells in the marrow stroma of normal animals.  相似文献   

19.
20.
Human megakaryocyte colonies are grown in methylcellulose with platelet-poor plasma and medium conditioned by phytohemagglutinin-stimulated leukocytes (PHA-LCM) as a source of megakaryocyte colony stimulating factor (MEG-CSF). The megakaryocyte colony growth-supporting activity in human plasma can be absorbed by intact platelets or degranulated platelet membranes. It was possible to recover the activity by solubilizing platelet membranes with cholic acid. Filtration of the solubilized platelet membrane preparations through a Sephadex G-100 column yielded at least two activity peaks. The molecular weight of these two activities differs from that of the growth-promoting activity in PHA-LCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号