首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inflammatory microenvironment plays an important role in the process of tumor development. Tumor necrosis factor-α (TNF-α), a key pro-inflammatory cytokine, has a significant role in this process. Natural medicinal products such as Withaferin A (WA) and Celastrol (Cel) have shown anti-cancer and anti-inflammatory properties that can be attributed to multiple mechanisms including, but not limited to, apoptosis induction due to the inhibition of proteasomal activities. This study aimed to investigate the effects of TNF-α in combination with WA or Cel in vitro in MDA-MB-231 breast cancer cells. TNF-α, when combined with WA or Cel, activated caspase-3 and -9 and downregulated XIAP in a dose-dependent manner, leading to induction of apoptosis in MDA-MB-231 breast cancer cells. The combination also caused accumulation of the proteasomal target protein IκBα, resulting in inhibition of the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results suggest that TNF-α could sensitize breast cancer cells MDA-MB-231 to WA and Cel, at least in part, through inhibiting the activation of NF-κB signaling, leading to XIAP inhibition with subsequent upregulation of caspase-3 and -9 activities. Thus, the anti-cancer activities of TNF-α are enhanced when combined with the natural proteasome inhibitors, WA or Cel.  相似文献   

2.
De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.  相似文献   

3.

Background and Objective

Currently, no satisfactory treatment is available for sciatica caused by herniated discs and/or spinal stenosis. The objective of this study is to assess the value of tumor necrosis factor (TNF)-α inhibitors in the treatment of sciatica.

Methods

Without language restrictions, we searched PubMed, OVID, EMBASE, the Web of Science, the Clinical Trials Registers, the Cochrane Central Register of Controlled Trials and the China Academic Library and Information System. We then performed a systematic review and meta-analysis on the enrolled trials that met the inclusion criteria.

Results

Nine prospective randomized controlled trials (RCTs) and two before-after controlled trials involving 531 patients met our inclusion criteria and were included in this study. Our systematic assessment and meta-analysis demonstrated that in terms of the natural course of the disease, compared with the control condition, TNF-α inhibitors neither significantly relieved lower back and leg pain (both p>0.05) nor enhanced the proportion of patients who felt overall satisfaction (global perceived effect (satisfaction)) or were able to return to work (return to work) (combined endpoint; p>0.05) at the short-term, medium-term and long-term follow-ups. In addition, compared with the control condition, TNF-α inhibitors could reduce the risk ratio (RR) of discectomy or radicular block (combined endpoint; RR = 0.51, 95% CI 0.26 to 1.00, p = 0.049) at medium-term follow-up, but did not decrease RR at the short-term (RR = 0.64, 95% CI 0.17 to 2.40, p = 0.508) and long-term follow-ups (RR = 0.64, 95% CI 0.40 to 1.03, p = 0.065).

Conclusion

The currently available evidence demonstrated that other than reducing the RR of discectomy or radicular block (combined endpoint) at medium-term follow-up, TNF-α inhibitors showed limited clinical value in the treatment of sciatica caused by herniated discs and/or spinal stenosis.  相似文献   

4.

Background

Tumor necrosis factor-α (TNF-α) may play an important role in the recalcitrant inflammatory and hyperproliferative dermatosis of psoriasis, and there may be a relationship between TNF-α polymorphisms and psoriasis risk.

Methods

We performed a meta-analysis to evaluate the associations between TNF-α polymorphisms and psoriasis. Electronic searches of Pubmed, Embase, and Web of Science were performed for all publications on the associations between TNF-α polymorphisms and psoriasis through September 26, 2012. The pooled odds ratios (ORs) with their 95% confidence interval (95%CIs) were calculated to assess the associations.

Results

Sixteen case-control studies with a total of 2,253 psoriasis cases and 1,947 controls on TNF-α 308 G/A polymorphism and fourteen studies on TNF-α 238 G/A polymorphism with 2,104 cases and 1,838 controls were finally included into the meta-analysis. Overall, TNF-α 308 G/A polymorphism was significantly associated with decreased risk of psoriasis under three genetic comparison models (for A versus G: fixed-effects OR 0.71, 95%CI 0.62-0.82, P < 0.001; for AG versus GG: fixed-effects OR 0.67, 95%CI 0.57-0.78, P < 0.001; for AA/AG versus GG: fixed-effects OR 0.67, 95%CI 0.58-0.78, P < 0.001). In addition, TNF-α 238 G/A polymorphism was associated with increased risk of psoriasis under three genetic models (for A versus G: fixed-effects OR 2.46, 95%CI 2.04-2.96, P < 0.001; for AG versus GG: fixed-effects OR 2.69, 95%CI 2.20-3.28, P < 0.001; for AA/AG versus GG: fixed-effects OR 2.68, 95%CI 2.20-3.26, P < 0.001). Subgroup analysis by ethnicity identified a significant association between TNF-α 308 G/A polymorphism and decreased risk of psoriasis in both Caucasians and Asians and a significant association between TNF-α 238 G/A polymorphism and increased risk of psoriasis in Caucasians.

Conclusions

The meta-analysis suggests that TNF-α 308 G/A polymorphism is associated with decreased risk of psoriasis, while TNF-α 238 G/A is associated with increased risk of psoriasis.  相似文献   

5.
6.
Tumor necrosis factor-alpha (TNF-α) derived from activated Schwann cells (SCs) plays a critical role as an inflammatory mediator in the peripheral nervous system disease. TNF-α could act as an autocrine mediator in SC activation. In this study, we found knockdown Src-suppressed protein kinase C substrate (SSeCKS) expression suppressed TNF-α production induced by TNF-α, overexpression of SSeCKS could promoted TNF-α autocrine in SCs. Such effects might be resulted in SSeCKS promoted p38 and JNK activation in SCs treated by TNF-α. Thus present data show that while SCs activation, SSeCKS may plays an important role in the release of inflammatory mediators.  相似文献   

7.
8.
9.
The haptoglobin-hemoglobin receptor CD163 and proTNF-α are transmembrane macrophage proteins subjected to cleavage by the inflammation-responsive protease ADAM17. This leads to release of soluble CD163 (sCD163) and bioactive TNF-α. Sequence comparison of the juxtamembrane region identified similar palindromic sequences in human CD163 (1044Arg-Ser-Ser-Arg) and proTNF-α (78Arg-Ser-Ser-Ser-Arg). In proTNF-α the Arg-Ser-Ser-Ser-Arg sequence is situated next to the previously established ADAM17 cleavage site. Site-directed mutagenesis revealed that the sequences harbor essential information for efficient cleavage of the two proteins upon ADAM17 stimulation. This was further evidenced by analysis of mouse CD163 that, like CD163 in other non-primates, does not contain the palindromic CD163 sequence in the juxtamembrane region. Mouse CD163 resisted endotoxin- and phorbol ester-induced shedding, and ex vivo analysis of knock-in of the Arg-Ser-Ser-Arg sequence in mouse CD163 revealed a receptor shedding comparable with that of human CD163. In conclusion, we have identified an essential substrate motif for ADAM17-mediated CD163 and proTNF-α cleavage in macrophages. In addition, the present data indicate that CD163, by incorporation of this motif in late evolution, underwent a modification that allows for an instant down-regulation of surface CD163 expression and inhibition of hemoglobin uptake. This regulatory modality seems to have coincided with the evolution of an enhanced hemoglobin-protecting role of the haptoglobin-CD163 system in primates.  相似文献   

10.
11.
12.
13.
14.
TNF is a pleotropic cytokine known to be involved in the progression of several pro-inflammatory disorders. Many therapeutic agents have been designed to counteract the effect of TNF in rheumatoid arthritis as well as a number of cancers. In the present study we have synthesized and evaluated the anti-cancer activity of novel biscoumarins in vitro and in vivo. Among new compounds, BIHC was found to be the most cytotoxic agent against the HepG2 cell line while exhibiting less toxicity toward normal hepatocytes. Furthermore, BIHC inhibited the proliferation of various hepatocellular carcinoma (HCC) cells in a dose- and time-dependent manner. Subsequently, using in silico target prediction, BIHC was predicted as a TNF blocker. Experimental validation was able to confirm this hypothesis, where BIHC could significantly inhibit the recombinant mouse TNF-α binding to its antibody with an IC50 of 16.5 μm. Furthermore, in silico docking suggested a binding mode of BIHC similar to a ligand known to disrupt the native, trimeric structure of TNF, and also validated with molecular dynamics simulations. Moreover, we have demonstrated the down-regulation of p65 phosphorylation and other NF-κB-regulated gene products upon BIHC treatment, and on the phenotypic level the compound shows inhibition of CXCL12-induced invasion of HepG2 cells. Also, we demonstrate that BIHC inhibits infiltration of macrophages to the peritoneal cavity and suppresses the activity of TNF-α in vivo in mice primed with thioglycollate broth and lipopolysaccharide. We comprehensively validated the TNF-α inhibitory efficacy of BIHC in an inflammatory bowel disease mice model.  相似文献   

15.
16.
Thyroid hormone-induced calorigenesis contributes to liver oxidative stress and promotes an increased respiratory burst activity in Kupffer cells, which could conceivably increase the expression of redox-sensitive genes, including those coding for cytokines. Our aim was to test the hypothesis that l -3,3',5-triiodothyronine (T3)-induced liver oxidative stress would markedly increase the production of TNF- α by Kupffer cells and its release into the circulation. Sprague-Dawley rats received a single dose of 0.1 mg T3/kg or vehicle (controls) and determinations of liver O2 consumption, serum TNF-α, rectal temperature, and serum T3 levels, were carried out at different times after treatment. Hepatic content of total reduced glutathione (GSH) and biliary glutathione disulfide (GSSG) efflux were measured as indices of oxidative stress. In some studies, prior to T3 injection animals were administered either (i) the Kupffer cell inactivator gadolinium chloride (GdCl3), (ii) the antioxidants α-tocopherol and N-acetyl-L-cysteine (NAC), or (iii) an antisense oligonucleotide against TNF-α (ASO TJU-2755). T3 elicited an 80-fold increase in the serum levels of TNF-α at 22h after treatment, which coincided with the onset of thyroid calorigenesis. Pretreatment with GdCl3 , α-tocopherol, NAC, and ASO TJU-2755 virtually abolished this effect and markedly reduced T3-induced liver GSH depletion and the increases in biliary GSSG efflux. It is concluded that the hyperthyroid state in the rat increases the circulating levels of TNF-α by actions exerted at the Kupffer cell level and these are related to the oxidative stress status established in the liver by thyroid calorigenesis.  相似文献   

17.
Ceramide synthases (CerS1–CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.  相似文献   

18.
The β1 integrin-stimulating antibody TS2/16 induces cAMP-dependent migration of MCF-10A breast cells on the extracellular matrix protein laminin-5. TS2/16 stimulates a rise in intracellular cAMP within 20 min after plating. Pertussis toxin, which inhibits both antibody-induced migration and cAMP accumulation, targets the Gαi3 subunit of heterotrimeric G proteins in these cells, suggesting that Gαi3 may link integrin activation and migration via a cAMP signaling pathway.  相似文献   

19.
Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis.  相似文献   

20.
The native lipooligosaccharide (LOS) from Neisseria meningitidis strain 89I was analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry and the spectrum compared with that of the LOS after O-deacylation and hydrogen fluoride treatment. The data are consistent with the presence of natural variations in the LOS, which include a triphosphorylated lipid A (LA) with and without a phosphoethanolamine group, and both hexa- and pentaacylated LA molecules. Thin-layer chromatography was performed on 89I LA produced by hydrolysis of the LOS, and the purified LA molecules were analyzed by MALDI-TOF and tested for their relative ability to induce the secretion of tumor necrosis factor-α by human monocytic THP-1 cells and primary human monocytes. The potency of tumor necrosis factor-α induction varied by ∼2–10-fold, depending on the state of acylation and phosphorylation. The results highlight the significance of phosphorylation along with acylation of the LA component of LOS in stimulation of inflammatory signaling, and suggest that natural strain variation in these moieties may be a feature of meningococcal bacteria, which is of critical importance to the progression of the infection.The lipid A (LA)2 portion of the lipopolysaccharide (LPS) or lipooligosaccharide (LOS) of Gram-negative bacteria is an inflammatory, pathogenic component of the bacterial outer membrane (13). Our interests lie in the Neisserial LA as it is implicated as a significant contributor to the pathogenesis of infections due to Neisseria meningitidis and Neisseria gonorrhoeae, which are of major public health concern around the world. In particular, N. meningitidis is the leading cause of epidemic meningitis and fatal sepsis in otherwise healthy individuals (4). On average more than 500,000 cases of meningococcal infection occur annually leading to ∼50,000 deaths, and large epidemic outbreaks can cause periodic spikes in occurrence. N. gonorrhoeae is a major cause of sexually transmitted infections, which can lead to pelvic inflammatory disease in 10–20% of infected women who can suffer from chronic pain, infertility, and ectopic pregnancy as a result (5). In addition, a growing number of studies have shown that gonococcal infection can facilitate the transmission of HIV (6).Numerous studies of LA signaling through the toll-like receptor 4 (TLR4) have increased our knowledge of the relationship between the LA structure and its inflammatory and immunogenic activity. The affinity of LA for monomeric binding to MD-2, which is a critical determinant in the agonist activity of LA for TLR4, has been found to be most potent in the hexaacylated compared with penta- or tetraacylated forms (7, 8). More recently, we and others have shown that triggering receptor expressed on myeloid cells-2 binds LOS and LPS in both myeloid and non-myeloid cells and initiates an inflammatory cytokine response (9, 10).Neisserial LOS lacks the repeating O-antigens of the LPS of the Gram-negative enteric bacteria, and differs also in the position, number, and chain length of the acyl groups on the LA. There can be differences in the acyl groups on the LA moieties within individual strains as well as between strains and species of Gram-negative bacteria (11, 12). The tetraacylated lipid IVa, which is a precursor of Escherichia coli LA has been found to be a TLR4 antagonist in human cells (13).In both LPS and LOS the number of phosphate (P) and phosphoethanolamine (PEA) groups on LA can vary (14), which impacts on the bioactivity of the molecule for innate immune responses. Recent work has shown that whereas hexaacyl monophosphoryl LA was restricted to the myeloid differentiation factor 88 (MyD88)-independent pathway, which resulted in T cell activation, the diphosphoryl LA also engaged the MyD88-dependent pathway, which activated NF-κB resulting in the production of TNF-α and other inflammatory cytokines (15). Because of its immunogenic properties, monophosphoryl LA has been approved for use as an adjuvant in a hepatitis B vaccine in Europe (16).We have observed major differences in the induction of proinflammatory cytokines through TLR4-mediated signaling elicited by various LOS purified from meningococcal and gonococcal strains (17). Little is known about the extent and biological significance of the natural structural variation in the LA of LOS occurring within a Neisserial strain. Recently, we reported that structural analyses of native LOS from different Neisserial strains indicated that differences in both acylation and phosphorylation of LA correlated significantly with the potency of LA to induce inflammatory cytokines (18). In this study, we used thin-layer chromatography (TLC) and matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) mass spectrometry (MS) to investigate the heterogeneity and inflammatory activity of the structural variants of the LA from N. meningitidis strain 89I, the LOS of which we found previously to be the most potent inducer of TNF-α among a group of seven Neisserial strains studied (17).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号