首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 800 毫秒
1.
将蓝舌病毒(BTV)13型S7与L3基因同时插入杆状病毒双表达载体pEastBacDual,获得重组杆状病毒rvBacBTVP37。该病毒在昆虫细胞中同时高水平表达BTV13 VP3与VP7蛋白,可以高效自动装配出20面体的60 ̄70nm空心颗粒。分析表明,所获颗粒为空心的BTV核心样颗粒(CLP),其成分为VP3与VP7,不含BTV其它任何蛋白与核酸。这种装配需要VP3与VP7的共同参与,二者缺  相似文献   

2.
王健伟  李晓成 《病毒学报》1999,15(3):238-243
对蓝舌病毒结构蛋白VP7作为组特异性诊断抗原进行了研究,将编码BTV13主要组特异性抗原VP7的S7cDNA插入杆状病毒表达载体pFastBac1,通过同源重组获得了重组杆状病毒evBacBTVP7。用此重组病毒感染昆虫细胞获得VP7蛋白的高效表达,表达量可占细胞蛋白总量的12.4%。  相似文献   

3.
侵染新疆甜菜的两种病毒分离物的研究   总被引:2,自引:0,他引:2  
在新疆甜菜的根部和叶片分离到两个球状病毒分离物。从病毒形态、生物学及物化性质等研究结果证明这两个分离物实是一种病毒。病毒粒体力20面体,直径约28nm,回接到甜菜上产生环斑和沿脉线纹最后形成坏死斑。此外还侵染苋色藜,昆诺阿黎,番杏,菠菜等,引起局部坏死斑。在普通烟,心叶烟,菜豆,黄瓜,蕃茄上无症状侵染,病毒致死温度为70℃,10分钟。体外存括期13天以上,冻干病叶7年后仍有侵染力。通过PEG沉淀、差速离心、琼脂糖柱层析及蔗糖梯度离心,可得到较高浓度的纯化病毒,病毒的紫外吸收最低值在245nm,最高值在260nm。经SDS-PAGE测定,病毒外壳蛋白的分子量为2.7×10 ̄4道尔顿,病毒基因组核酸为三个组份,分子量分别为3.08kb,1.28kb和0.85kb。在琼脂双扩散实验中,能与番茄黑环病毒(TBRV)抗血清产生较弱的沉淀线,与黄瓜花叶病毒(CWV)、烟草环斑病毒(TRSV)、烟草坏死病毒(TNV)、香石竹环斑病毒(CaRSV)的抗血清不发生反应。  相似文献   

4.
以草鱼呼肠孤病毒(GCRV)感染的草鱼肾细胞系(CIK)为模型,进行了草鱼呼肠孤病毒在细胞内的形态发生的研究。当病毒以感染复数为5 ̄10PFU/CELL感染CIK细胞时,在病毒感染细胞4h以内的切片中,可观察到脱去部分外层衣壳的不完整病毒颗粒。感染细胞8h,可观察到浆胞内病毒发生基质,其内含有大量的直径约50nm的亚病毒颗粒,无外层蛋白结构。感染12 ̄16h后,这些亚病毒颗粒装配上外层蛋白结构,形  相似文献   

5.
蚕豆萎蔫病毒纯化和病毒蛋白质及RNA组份分析   总被引:6,自引:0,他引:6  
周雪平  李德葆 《病毒学报》1996,12(4):367-373
属蚕豆萎蔫病毒(BBWV)血清II型的分离物B-934接种昆诺藜,采收的病叶先用含蔗糖的高浓度磷酸钾盐缓冲液,后用TritonX-100处理,成功地提取了大量病毒粒子,提纯病毒得率为134mg/kg病叶,提纯病毒在电镜下可观察到大量球状病毒粒子,直径约25nm,提纯的BBWV经甘油梯度超离心后在可观察到3个组份,分别称T,B和M组份,其中T为空壳蛋白,B和M为核蛋白,各组份经SDS-PAGE测定,  相似文献   

6.
侵染半夏的两种病毒的分离纯化和初步鉴定   总被引:10,自引:0,他引:10  
用自然感染的半夏(Pinelliaternata)为材料,经粗提纯后检查到一种线状病毒和一种球状病毒,用两种方法对担提纯样品中的病毒粒子进行了分离纯化。10%-70%连续甘油梯度80000g离心150分钟获得两条病毒带,经紫外吸收测定均为强的核蛋白吸收峰,病毒粒子检查分别为球状和线状病毒粒子,线状病毒经浓缩收集为均一成份.与芋花叶病毒(Dasheemmosaicvirus,DMV)抗体有强的阳性反应。粗提纯样品经0.8%琼脂糖凝胶电脉分离为一条蛋白带,该条带回收后经紫外吸收测定为核蛋白吸收峰,电镜下检查为均一的球状病毒,以TMV为对照、醋酸铀(UAC)负染后测得该球状病毒(pinelliasphericalvirus1.PsV-1)的大小为31.7nm;戊二醛固定后磷钨酸(PTA)负染测得PsV—1的大小为34.0nm。各组分经SDS-聚丙烯酸胺凝焦电泳分析测得线状病毒和球状病毒的外壳蛋白分子量分别为20KD和28KD。初步确定线状病毒为DMV.球状病毒PsV—1为侵梁天南星科半夏的一种新病毒。  相似文献   

7.
将编码柯萨奇B3病毒(CVB3)衣壳蛋白VP1和VP2的基因,分别克隆到具有7.5k启动子的痘苗病毒表达载体pGJP5上;将CVB3衣壳蛋白全基因克隆到具有T7启动子的痘苗表达载体pTM1上,并筛先到相应的重组痘苗病毒VVP1、VVP2和VVP/4/2/3/1。VVP1和VVP2稳定表达产物为CVB3衣壳蛋白VP1和VP2,而VVP4/2/3/1为一无分泌性的多聚蛋白,且这三种表达产物均属无分泌性  相似文献   

8.
犬瘟热病毒细胞膜受体的鉴定   总被引:16,自引:0,他引:16  
郭爱珍  陆承平 《病毒学报》2000,16(2):155-157
犬瘟热病毒(CDV)敏感细胞Vero用SDS或RIPA溶解缓冲液溶解,利用病毒铺覆蛋白印迹技术(VOPBA)鉴定犬瘟热病毒疫苗株(CDV-ondestepoort)的细胞受体。结果发现,在Vero细胞上有两组CDV结合蛋白质,即高分子量组蛋白质(127kD、120kD、110kD)与低分子量组蛋白质(27kD和30kD)。这些CDV结合蛋白组分的性质及在CDV致病中的作用有等进一步研究。  相似文献   

9.
蔗糖密度梯度离心法提纯斜纹夜蛾核多角体病毒($Spodoptera litura  multinucleocapsid nucleopolyhdrovirus, SpltMNPV)包埋型病毒粒子(polyhedra-derived virus,PDV),以此病毒粒子作抗原,免疫家兔获得抗血清;用SDS裂解缓冲液提取斜纹夜蛾幼虫中肠组织细胞总蛋白。采用病毒铺覆蛋白印迹技术(VOPBA),利用抗PVD抗血清对病毒受体进行检测,结果表明斜纹夜蛾中肠细胞总蛋白中40kD、73kD、85kD的三种蛋白能够结合PDV。  相似文献   

10.
四种动物病毒的细胞培养及血凝检测的比较研究李天宪,赵林,罗怡珊,冯锋(中国科学院武汉病毒研究所,武汉430071)关键词细小病毒,细胞培养,细胞病变,血凝试验云豹肠炎病毒(LPV)、水貂肠炎病毒(MEV)、犬肠炎病毒(CPV)和猫泛白细胞减少症病毒(...  相似文献   

11.
S Tanaka  P Roy 《Journal of virology》1994,68(5):2795-2802
Bluetongue virus (BTV) cores consist of the viral genome and five proteins, including two major components (VP3 and VP7) and three minor components (VP1, VP4, and VP6). VP3 proteins form an inner scaffold for the deposition on the core of the surface layer of VP7. VP3 also encapsidates and interacts with the three minor proteins. The BTV VP3 protein consists of 901 amino acids and has a sequence that is a highly conserved among BTV serotypes and other orbiviruses (e.g., epizootic hemorrhagic disease virus and African horse sickness virus). To locate sites of interaction between VP3 and the other structural proteins, we have analyzed the effects of a number of VP3 deletion mutants representing conserved regions of the protein, using as an assay the formation of core-like particles (CLPs) expressed by recombinant baculoviruses. Five of the VP3 deletion mutants interacted with the coexpressed VP7 and made CLPs. These CLPs also incorporated the three minor proteins. One mutant, lacking VP3 amino acid residues 499 to 508, failed to make CLPs. Further mutational analyses have demonstrated that a methionine at residue 500 of VP3 and an arginine at residue 502 were both required for CLP formation.  相似文献   

12.
A lattice of VP7 trimers forms the surface of the icosahedral bluetongue virus (BTV) core. To investigate the role of VP7 oligomerization in core assembly, a series of residues for substitution were predicted based on crystal structures of BTV type 10 VP7 molecule targeting the monomer-monomer contacts within the trimer. Seven site-specific substitution mutations of VP7 have been created using cDNA clones and were employed to produce seven recombinant baculoviruses. The effects of these mutations on VP7 solubility, ability to trimerize and formation of core-like particles (CLPs) in the presence of the scaffolding VP3 protein, were investigated. Of the seven VP7 mutants examined, three severely affected the stability of CLP, while two other mutants had lesser effect on CLP stability. Only one mutant had no apparent effect on the formation of the stable capsid. One mutant in which the conserved tyrosine at residue 271 (lower domain helix 6) was replaced by arginine formed insoluble aggregates, implying an effect in the folding of the molecule despite the prediction that such a change would be accommodated. All six soluble VP7 mutants were purified, and their ability to trimerize was examined. All mutants, including those that did not form stable CLPs, assembled into stable trimers, implying that single substitution may not be sufficient to perturb the complex monomer-monomer contacts, although subtle changes within the VP7 trimer could destabilize the core. The study highlights some of the key residues that are crucial for BTV core assembly and illustrates how the structure of VP7 in isolation underrepresents the dynamic nature of the assembly process at the biological level.  相似文献   

13.
To understand the assembly process of bluetongue virus (BTV), we have established a functional assay which allows us to produce and manipulate BTV core-like particles (CLPs) composed of the viral VP7 and VP3 proteins. A cDNA clone encoding the 349-amino-acid VP7 protein has been manipulated to generate deletion, extension, and site-specific mutants. Each mutant was coexpressed with the BTV VP3 protein to generate CLPs. Deletion and extension mutants involving the VP7 carboxy terminus prevented CLP formation, while an extension mutant involving an 11-amino-acid rabies virus sequence added to the amino terminus of VP7 allowed CLP formation. Substitution of either of two cysteine residues of VP7 (Cys-15 or Cys-65) by serine also did not prevent CLP formation; however, substitution of the single lysine residue of VP7 (Lys-255) by leucine abrogated CLP formation, indicating a critical role for this lysine.  相似文献   

14.
H Le Blois  B Fayard  T Urakawa    P Roy 《Journal of virology》1991,65(9):4821-4831
A functional assay has been developed to determine the conservative nature of the interacting sites of various structural proteins of orbiviruses by using baculovirus expression vectors. For this investigation, proteins of two serologically related orbiviruses, bluetongue virus (BTV) and the less studied epizootic hemorrhagic disease virus (EHDV), were used to synthesize chimeric particles. The results demonstrate that the inner capsid protein VP3 of EHDV-1 can replace VP3 protein of BTV in formation of the single-shelled corelike particles and the double-shelled viruslike particles. Moreover, we have demonstrated that all three minor core proteins (VP1, VP4, and VP6) can be incorporated into the homologous and chimeric corelike and viruslike particles, indicating that the functional epitopes of the VP3 protein are conserved for the morphological events of the virus. This is the first evidence of assembly of seven structural proteins of the virus by a baculovirus expression system. Confirmation at the molecular level was obtained by determining the EHDV-1 L3 gene nucleic sequence and by comparing it with sequences available for BTV. The analysis revealed a high degree homology between the two proteins: 20% difference, 50% of which is conservative. The consequences for Orbivirus phylogeny and the possibility of gene reassortments are discussed.  相似文献   

15.
《Gene》1997,190(1):119-129
The baculovirus expression vector is a eukaryotic DNA viral vector for the cloning and expression of foreign genes in cultured lepidopteran insect cells and insects. It has become an important tool for the large-scale production of recombinant proteins for a variety of applications including the structure-function analysis of genes and their gene products. We have developed a number of baculovirus multigene expression vectors and utilized these to understand the assembly process of multicomponent capsid structures of large viruses such as bluetongue virus (BTV), a member of the Orbivirus genus within the family Reoviridae. BTV is some 810 Å in diameter and comprised of two protein shells containing four major proteins, VP2, VP5, VP7 and VP3, surrounding a genome of ten double-stranded RNA segments and three minor proteins (VP2, VP4 and VP6). BTV is the etiological agent of a sheep disease that is sometimes fatal in certain parts of the world (e.g., Africa, Asia, and the Americas). Using baculovirus multigene vectors, we have co-expressed various combinations of BTV genes in insect cells and produced structures that mimic the various stages of BTV assembly. For example, co-expressed VP3 and VP7 form BTV core-like particles, while co-expressed VP2, VP5, VP7 and VP3 form BTV virus-like particles. Using deletion, point and domain switching analyses of each protein, we have been able to identify certain sequences in the VP7 and VP3 proteins that are essential for the assembly of core-like particles. These expression and biochemical studies have been complemented by collaboration studies using cryoelectron microscopy and image processing analyses to provide the three-dimensional structure of the expressed particles. In addition and with other associates, we have used X-ray crystallography of VP7 to deduce its atomic structure. Extensive studies on the immune responses elicited by these self-assembled particles, and chimeric derivatives involving various foreign antigens, have been carried out. Finally, using as little as 10 μg of the self-assembled virus-like particles, we have shown that they can confer long-lasting protection in sheep against BTV.  相似文献   

16.
T J French  J J Marshall    P Roy 《Journal of virology》1990,64(12):5695-5700
Bluetongue is a disease of ruminants. The etiologic agent is bluetongue virus (BTV), a gnat-transmitted member of the Orbivirus genus of the Reoviridae. The virus has a genome of 10 double-stranded RNA species L1 to L3, M4 to M6, S7 to S10). The L2 and M5 genes of BTV which encode the outer capsid proteins VP2 and VP5, respectively, were inserted into a recombinant baculovirus downstream of duplicated copies of the baculovirus polyhedrin promoter. Insect cells coinfected with this virus plus a recombinant baculovirus expressing the two major core proteins VP3 and VP7 of BTV (T.J. French and P. Roy, J. Virol. 64:1530-1536, 1990) synthesized noninfectious, double-shelled, viruslike particles. When purified, these particles were found to have the same size and appearance as authentic BTV virions and exhibited high levels of hemagglutination activity. Antibodies raised to the expressed particles contained high titers of neutralizing activity against the homologous BTV serotype. The assembly of these bluetongue viruslike particles after the simultaneous expression of four separate proteins is indicative of the potential of this technology for the production of a new generation of viral vaccines and for the study of complex, multiprotein structures.  相似文献   

17.
Bluetongue virus is the aetiological agent of bluetongue, a disease of domestic and wild ruminants. Twenty-four serotypes are recognized. Novel subunit vaccines, that complement existing modified live polyvalent vaccines, are being developed. Serotype-specific viral neutralizing antibodies that are able to protect sheep against virulent homologous virus challenge can be induced by immunizing with the BTV outer capsid protein VP2 purified from virions or with VP2 expressed by baculovirus recombinants. Presentation of VP2 on virus-like particles, which assemble upon co-expression of the four major structural viral proteins (VP2, VP5, VP3 and VP7), improves the protective effect of VP2. Sheep immunized with core-like particles, comprised of VP3 and VP7, developed only limited clinical signs after virulent virus challenge, demonstrating that not only the outer capsid proteins, but also the core proteins are involved in protection against bluetongue.  相似文献   

18.
Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus which is transmitted by blood-feeding gnats to wild and domestic ruminants, causing high morbidity and often high mortality. Partly due to this BTV has been in the forefront of molecular studies for last three decades and now represents one of the best understood viruses at the molecular and structural levels. BTV, like the other members of the Reoviridae family is a complex non-enveloped virus with seven structural proteins and a RNA genome consisting of 10 dsRNA segments of different sizes. In virus infected cells, three other virus encoded nonstructural proteins are synthesized. Significant recent advances have been made in understanding the structure–function relationships of BTV proteins and their interactions during virus assembly. By combining structural and molecular data it has been possible to make progress on the fundamental mechanisms used by the virus to invade, replicate in, and escape from, susceptible host cells. Data obtained from studies over a number of years have defined the key players in BTV entry, replication, assembly and egress. Specifically, it has been possible to determine the complex nature of the virion through three dimensional structure reconstructions; atomic structure of proteins and the internal capsid; the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell and the protein sequestration required for it; and the role of three NS proteins in virus replication, assembly and release. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.  相似文献   

19.
Bluetongue virus (BTV) is an arthropod-borne virus transmitted by Culicoides species to vertebrate hosts. The double-capsid virion is infectious for Culicoides vector and mammalian cells, while the inner core is infectious for only Culicoides-derived cells. The recently determined crystal structure of the BTV core has revealed an accessible RGD motif between amino acids 168 to 170 of the outer core protein VP7, whose structure and position would be consistent with a role in cell entry. To delineate the biological role of the RGD sequence within VP7, we have introduced point mutations in the RGD tripeptide and generated three recombinant baculoviruses, each expressing a mutant derivative of VP7 (VP7-AGD, VP7-ADL, and VP7-AGQ). Each expressed mutant protein was purified, and the oligomeric nature and secondary structure of each was compared with those of the wild-type (wt) VP7 molecule. Each mutant VP7 protein was used to generate empty core-like particles (CLPs) and were shown to be biochemically and morphologically identical to those of wt CLPs. However, when mutant CLPs were used in an in vitro cell binding assay, each showed reduced binding to Culicoides cells compared to wt CLPs. Twelve monoclonal antibodies (MAbs) was generated using purified VP7 or CLPs as a source of antigen and were utilized for epitope mapping with available chimeric VP7 molecules and the RGD mutants. Several MAbs bound to the RGD motif on the core, as shown by immunogold labeling and cryoelectron microscopy. RGD-specific MAb H1.5, but not those directed to other regions of the core, inhibited the binding activity of CLPs to the Culicoides cell surface. Together, these data indicate that the RGD motif present on BTV VP7 is responsible for Culicoides cell binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号