首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human platelet glycoprotein Ib (GP Ib) is a major integral membrane protein that has been identified as the platelet-binding site mediating the factor VIII/von Willebrand-factor-dependent adhesion of platelets to vascular subendothelium. Recent evidence suggests that GP Ib is normally complexed with another platelet membrane protein, GP IX. In this study, human platelet plasma membranes were selectively solubilized with a buffer containing 0.1% (v/v) Triton X-100. The GP Ib complex (GP Ib plus GP IX) was purified to homogeneity in approximately 30% yield by immunoaffinity chromatography of the membrane extract using the anti-(glycoprotein Ib complex) murine monoclonal antibody, WM 23, coupled to agarose. GP Ib and GP IX were subsequently isolated as purified components by immunoaffinity chromatography of the GP Ib complex using a second anti-(glycoprotein Ib complex) monoclonal antibody, FMC 25, coupled to agarose. As assessed by dodecyl sulphate/polyacrylamide gel electrophoresis, purified GP Ib was identical to the molecule on intact platelets and had an apparent relative molecular mass of 170 000 under nonreducing conditions and 135 000 (alpha subunit) and 25 000 (beta subunit) under reducing conditions. GP IX had an apparent Mr of 22 000 under both nonreducing and reducing conditions. Purified Gb Ib complex and GP Ib inhibited the ristocetin-mediated, human factor VIII/von Willebrand-factor-dependent and bovine factor VIII/von Willebrand-factor-dependent agglutination of washed human platelets suggesting the proteins had been isolated in functionally active form. GP Ib alpha had a similar amino acid composition to that previously reported for its proteolytic degradation product, glycocalicin. The amino acid compositions of GP Ib beta and GP IX were similar but showed marked differences in the levels of glutamic acid, alanine, histidine and arginine. The N-termini of GP Ib alpha and GP IX were blocked; GP Ib beta had the N-terminal sequence, Ile-Pro-Ala-Pro-. On crossed immunoelectrophoresis, both GP Ib and GP IX were found to occur in the same immunoprecipitin arc(s) whether the platelets had been solubilized in the absence or presence of the calcium-dependent protease inhibitor, leupeptin. Binding studies in platelet-rich plasma indicated a similar number of binding sites (means +/- SD) for three anti-(glycoprotein Ib complex) monoclonal antibodies: AN 51, epitope on GP Ib alpha (22 000 +/- 2700, n = 3), WM 23, epitope on GP Ib alpha (21 000 +/- 3400, n = 3), FMC 25, epitope on GP IX (20 100 +/- 2700, n = 3), and FMC 25 (Fab')2 (27 100 +/- 800, n = 2).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The glycoprotein (GP) Ib-IX complex is a major component of the platelet membrane which mediates adhesion of platelets to exposed subendothelium. GP Ib is a heterodimer with a large alpha chain (Mr = 135,000-145,000) and small beta chain (Mr = 22,000-27,000) linked by a disulfide bond(s). GP Ib is bound in a noncovalent 1:1 complex with GP IX (Mr = 17,000-22,000). We labeled isolated human platelets with [3H] palmitate or surface-labeled platelet membrane glycoproteins with sodium periodate-[3H]sodium borohydride and immunoprecipitated the GP Ib-IX complex from radiolabeled platelet lysates using a mouse monoclonal antibody (SZ.1) which recognizes the intact complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates from [3H]palmitate-labeled platelets revealed two radiolabeled bands under reducing conditions at 24 and 19 kDa and two bands under nonreducing conditions at 170 and 19 kDa. As demonstrated by the parallel analysis of immunoprecipitates from periodate-[3H]sodium borohydride-labeled platelets, the [3H]palmitate-labeled bands obtained under reducing conditions corresponded to GP Ib beta and GP IX and the ones obtained under nonreducing conditions to intact GP Ib and GP IX, respectively. Using alkaline methanolysis followed by high pressure liquid chromatography analysis of the methanolysis products, we demonstrated that the radioactivity associated with the GP Ib-IX complex from [3H]palmitate-labeled platelets was, in fact, covalently bound [3H]palmitate in ester linkage to protein. The protein-fatty acid linkage was also disrupted by hydroxylamine at neutral pH. Thus, this study demonstrates that GP Ib beta and GP IX in human platelets are both fatty acid-acylated with palmitate through thioester linkages.  相似文献   

3.
Structure of the glycoprotein Ib.IX complex from platelet membranes   总被引:2,自引:0,他引:2  
The glycoprotein Ib.IX complex is a major component of the platelet membrane. It mediates the adhesion of platelets to exposed subendothelium and provides an attachment site for the membrane skeleton on the plasma membrane. The present study was designed to characterize the structure of the glycoprotein Ib.IX complex. Electron microscopy of purified glycoprotein Ib.IX complex in detergent showed that each complex existed as a flexible rod with a globular domain on either end. The overall length of the complex was approximately 59.5 nm. The smaller globular domain had a diameter of approximately 8.9 nm; the larger, a diameter of approximately 15.9 nm. In the absence of detergent, the glycoprotein Ib.IX complexes tended to self-associate through the larger globular domain, suggesting that this domain contained the hydrophobic region that inserts into the membrane. Proteases known to cleave glycoprotein Ib alpha close to its membrane-insertion site released the larger globular domain. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that this domain was composed of glycoprotein Ib beta, glycoprotein IX, and a Mr = 25,000 fragment of glycoprotein Ib alpha. Proteolysis at the external end of glycoprotein Ib alpha reduced the size of the smaller globular domain. This study shows that the glycoprotein Ib.IX complex has an elongated shape, with a globular domain on the end that inserts into the membrane and a smaller globular domain on the end of glycoprotein Ib alpha that is oriented external to the plasma membrane.  相似文献   

4.
Platelet responses are inhibited by agents such as prostaglandin E1 that increase the cytoplasmic concentration of cyclic AMP. Inhibition is thought to result from phosphorylation of specific proteins. One protein that becomes phosphorylated is glycoprotein (GP) Ib beta, a component of the GP Ib.IX complex. We have suggested that phosphorylation of GP Ib beta inhibits the collagen-induced polymerization of actin. The aim of the present study was to identify the amino acid(s) in GP Ib beta that is phosphorylated. Purified GP Ib.IX complex was phosphorylated by the catalytic subunit of purified bovine cyclic AMP-dependent protein kinase in the presence of [gamma-32P]ATP. Phosphoamino acid analysis showed that in GP Ib beta, [32P]phosphate was incorporated only into serine and was in a single tryptic peptide. Amino acid sequencing showed that this peptide was from the cytoplasmic domain of GP Ib beta and encompassed residues 161-175. A single serine residue, serine 166, contained the radiolabel. To determine whether the same residue was phosphorylated in intact platelets, GP Ib beta was isolated from 32P-labeled platelets before or after their exposure to prostaglandin E1. In both cases, radiolabel was present in phosphoserine and was in a single tryptic peptide. This peptide was the same as that which was phosphorylated in the purified GP Ib.IX complex, as shown by its identical mobility on two-dimensional tryptic maps, the presence of a positively charged residue in the fourth position, and the presence of the radiolabel in the sixth position of the peptide. This study shows that when cyclic AMP concentrations rise in platelets, the cytoplasmic domain of GP Ib beta is phosphorylated on serine 166, probably by cyclic AMP-dependent protein kinase. We suggest that phosphorylation of this residue may contribute to the inhibitory actions of cyclic AMP by inhibiting collagen-induced polymerization of actin.  相似文献   

5.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

6.
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct 'maps', indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.  相似文献   

7.
As the receptor on the platelet surface for von Willebrand factor, glycoprotein (GP) Ib-IX complex is critically involved in hemostasis and thrombosis. How the complex is assembled from GP Ibα, GP Ibβ and GP IX subunits, all of which are type I transmembrane proteins, is not entirely clear. Genetic and mutational analyses have identified the transmembrane (TM) domains of these subunits as active participants in assembly of the complex. In this study, peptides containing the transmembrane domain of each subunit have been produced and their interaction with one another characterized. Only the Ibβ TM sequence, but not the Ibα and IX counterparts, can form homo-oligomers in SDS-PAGE and TOXCAT assays. Following up on our earlier observation that a Ibβ-Ibα-Ibβ peptide complex (αβ2) linked through native juxtamembrane disulfide bonds could be produced from isolated Ibα and Ibβ TM peptides in detergent micelles, we show here that addition of the IX TM peptide facilitates formation of the native αβ2 complex, reproducing the same effect by the IX subunit in cells expressing the GP Ib-IX complex. Specific fluorescence resonance energy transfer was observed between donor-labeled αβ2 peptide complex and acceptor-conjugated IX TM peptide in micelles. Finally, the mutation D135K in the IX TM peptide could hamper both the formation of the αβ2 complex and the energy transfer, consistent with its reported effect in the full-length complex. Overall, our results have demonstrated directly the native-like heteromeric interaction among the isolated Ibα, Ibβ and IX TM peptides, which provides support for the four-helix bundle model of the TM domains in the GP Ib-IX complex and paves the way for further structural analysis. The methods developed in this study may be applicable to other studies of heteromeric interaction among multiple TM helices.  相似文献   

8.
Human platelet membrane glycoproteins IIb and III are two major integral membrane components that have been identified as sites mediating thrombin-induced aggregation. For purposes of our study, glycoproteins IIb and III were solubilized by extracting platelet plasma membranes with a buffer containing 0.1% Triton X-100 and were separated by gel filtration chromatography on Sephacryl S-300, employing Triton X-100-containing column buffers with or without urea or guanidine hydrochloride. The physical properties of the purified glycoproteins were: for glycoprotein IIb, Rs = 61 A, s20.w = 4.7, f/f0 = 1.7, Mr = 125,000 (hydrodynamic values), Mr = 136,000 (sodium dodecyl sulfate gels); for glycoprotein III, Rs = 67 A, s20,w = 3.2 f/f0 = 2.1, Mr = 93,000 (hydrodynamic values), Mr = 95,000 (sodium dodecyl sulfate gels). Although the amino acid compositions of the two glycoproteins were similar, antibodies raised against glycoprotein IIb did not crossreact with glycoprotein III. If divalent cations were not chelated in the Triton extract, glycoproteins IIb and III coeluted during gel filtration chromatography (apparent Stokes radius of 71 A) and co-sedimented on sucrose gradients (apparent s20.w of 8.6), from which Mr = 265,000 was calculated. Glycoproteins IIb and III were coprecipitated by an antibody monospecific for glycoprotein IIb. The two glycoproteins dissociated into monomers when EDTA was added to Triton lysates. Readdition of Ca2+ caused them to reassociate into a complex with physical properties similar to those of the complex in the original Triton lysate. The data show that glycoproteins IIb and III are a heterodimer complex, that complex formation depends upon the presence of Ca2+, and that chelation of Ca2+ causes dissociation into monomeric glycoproteins.  相似文献   

9.
An anticoagulant protein, factor IX/factor X-binding protein (IX/X-bp), isolated from the venom of Trimeresurus flavoviridis, binds with factor IX and factor X in the presence of Ca2+ with a 1 to 1 stoichiometry (Atoda, H., and Morita, T. (1989) J. Biochem. (Tokyo) 106, 808-813). Analysis of S-pyridylethylated IX/X-bp by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a 16.0-kDa band (designated the A chain) and a 15.5-kDa band (designated the B chain). These two chains were separated by reversed-phase high performance liquid chromatography, and their complete amino acid sequences were determined by sequencing of the peptides obtained after digestion with lysyl endopeptidase, chymotrypsin, and V8 protease from Staphylococcus aureus and after chemical cleavage with cyanogen bromide. The A chain had an amino-terminal sequence of Asp-Cys-Leu-Ser-Gly- and consisted of 129 residues with Mr 14,830. The B chain has an amino-terminal sequence of Asp-Cys-Pro-Ser-Asp- and consists of 123 residues of Mr 14,440. There was 47% identity between the A and the B chain. The sequence of IX/X-bp showed 25-37% identity with that of the C-type carbohydrate recognition domain-like structure of acorn barnacle lectin, human and rat asialoglycoprotein receptors, the human lymphocyte Fc epsilon receptor for immunoglobulin E, proteoglycan core protein, pancreatic stone protein, and tetranectin. The sequences of the first 18 amino acid residues of both the A and B chains were also, to a certain extent, homologous to the partial amino acid sequence of the b subunit of factor XIII, a member of the beta 2-glycoprotein I-like family. In this region, some similarity with the amino-terminal amino acid sequence of botrocetin was also observed.  相似文献   

10.
The localization of the platelet glycoprotein GP Ib-IX complex (GP Ibα, GP Ibβ, and GP IX) to membrane lipid domain, also known as glycosphingolipid-enriched membranes (GEMs or raft) lipid domain, is essential for the GP Ib-IX complex mediated platelet adhesion to von Willebrand factor (vWf) and subsequent platelet activation. To date, the mechanism for the complex association with the GEMs remains unclear. Although the palmitate modifications of GP Ibβ and GP IX were thought to be critical for the complex presence in the GEMs, we found that the removal of the putative palmitoylation sites of GP Ibβ and GP IX had no effects on the localization of the GP Ib-IX complex to the GEMs. Instead, the disruption of GP Ibα disulfide linkage with GP Ibβ markedly decreased the amount of the GEM-associated GP Ibα without altering the GEM association of GP Ibβ and GP IX. Furthermore, partial dissociation with the GEMs greatly inhibited GP Ibα interaction with vWf at high shear instead of in static condition or under low shear stress. Thus, for the first time, we demonstrated that GP Ibβ/GP IX mediates the disulfide-linked GP Ibα localization to the GEMs, which is critical for vWf interaction at high shear.  相似文献   

11.
Human platelet glycoprotein Ib has been purified in milligram amounts from platelets obtained by pheresis of thrombocytotic donors. Purification steps included lectin (wheat germ agglutinin) and immuno (murine monoclonal anti-glycoprotein Ib antibody)-affinity chromatography. The disulfide-linked individual alpha and beta chains of GPIb were separated and the amino-terminal amino acid sequence of each chain was determined. Rabbit polyclonal antibody directed against each individual chain was prepared by affinity chromatography and shown to be monospecific by western blot analysis using whole platelet lysate as antigen. These studies outline a useful approach to isolate and characterize the individual chains of GPIb.  相似文献   

12.
We have expressed in mammalian cells a fragment (residues 1-302) of the alpha chain of platelet glycoprotein (GP) Ib containing the von Willebrand factor- (vWF) binding site. The secreted soluble protein had an apparent molecular mass of 45 kDa and reacted with conformation-dependent monoclonal antibodies that bind only to native GP Ib, thus demonstrating its proper folding. After insolubilization on nitrocellulose membrane, the recombinant GP Ib alpha fragment bound soluble vWF in the presence of ristocetin or botrocetin with a dissociation constant similar to that exhibited by GP Ib.IX complex on platelets. Moreover, the interaction was blocked by anti-GP Ib monoclonal antibodies known to inhibit vWF binding to platelets. The sequence of GP Ib alpha between residues 269-287 has a strong net negative charge due to the presence of 10 glutamic or aspartic acid residues; 5 of these are contained in the sequence of a synthetic peptide (residues 251-279) previously shown to inhibit vWF-platelet interaction. In order to evaluate the possible functional role of these acidic residues, we employed site-directed mutagenesis to express two mutant GP Ib alpha fragments containing asparagine or glutamine instead of aspartic or glutamic acid, respectively. Mutant 1, with substitutions between residues 251-279, failed to bind vWF whether in the presence of ristocetin or botrocetin; in contrast, vWF binding to Mutant 2, with substitutions between residues 280-302, was nearly normal in the presence of ristocetin, but markedly decreased in the presence of botrocetin. Thus, mammalian cells transfected with a truncated cDNA sequence encoding the amino-terminal domain of GP Ib alpha synthesize a fully functional vWF-binding site; acidic residues in the sequence 252-287 are essential for normal function.  相似文献   

13.
Using gastric mucous cells which are involved exclusively in the synthesis of secretory O-glycosidic glycoprotein (mucin), the relationship between protein core synthesis and its acylation with fatty acids was investigated. Labeling of the cells with [3H]palmitic acid and [35S]methionine followed by isolation of peptidyl-tRNA and release of nascent peptides, indicated that these peptides contain covalently bound fatty acids. The high performance thin layer chromatography, SDS-gel electrophoresis, and radioactivity scanning revealed that the preparation contained three fractions labeled with palmitate (Mr 15,000-3,600) and two (Mr 1,500 and less) without this label. Based on these data and the nascent peptides amino acid analysis, we conclude that the protein core of the O-glycosidic glycoprotein is acylated with fatty acids during translation, when the peptide chain is longer than 21 amino acid residues.  相似文献   

14.
Tamm-Horsfall glycoprotein preparations were obtained from calf urine by 1.0 M NaCl precipitation followed by 4 M urea/Sepharose 4B chromatography. By using 0.1% sodium dodecyl sulfate polyacrylamide gel electrophoresis a molecular weight of 86 500 +/- 4500 (n = 12) was calculated for the glycoprotein. Amino acid and carbohydrate analyses were performed, the carbohydrate composition being (in residues per 100 amino acid residues in the glycoprotein): fucose, 0.90; galactose, 4.82; mannose, 4.63;N-acetylglucosamine, 7.36; N-acetylgalactosamine, 1.38; sialic acid, 2.93. Under conditions of mild acid hydrolysis (0.05 M H2SO4, 80 degrees C, 1 h) the calf Tamm-Horsfall glycoprotein preparations were degraded partially into two lower molecular weight fragments (approximate Mr 66 000 and 51 000), as shown by polyacrylamide gel electrophoresis, both fragments being periodic acid-Schiff reagent positive.  相似文献   

15.
Platelet function is inhibited by prostaglandin E1, prostaglandin I2, or forskolin, agents that increase the intracellular concentration of cyclic AMP. The inhibition appears to result from cyclic AMP-stimulated phosphorylation of specific intracellular proteins. One of the major increases in phosphorylation occurs in a polypeptide of Mr = 24,000 (P24). In this study, an effort was made to identify P24. Platelets prelabeled with [32P]phosphate were incubated with prostaglandin E1, prostaglandin I2, or forskolin. Proteins that became phosphorylated were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels. Several lines of evidence indicated that P24 was the beta-subunit of the plasma membrane glycoprotein (GP) Ib, a glycoprotein that is essential for the adhesion of platelets to damaged subendothelium, for the rapid response of platelets to thrombin, and for the attachment of the membrane skeleton to the cytoplasmic face of the plasma membrane. P24 co-migrated with GP Ib beta on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ib beta is disulfide-linked to GP Ib alpha and migrates with Mr = 170,000). Like GP Ib beta, P24 was associated with actin filaments in Triton X-100 lysates. Like GP Ib beta, it was selectively associated with filaments of the membrane skeleton and was released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (which lack GP Ib) to prostaglandin E1 resulted in phosphorylation of other polypeptides, but not of P24. These studies show that P24, one of the major polypeptides phosphorylated when platelets are exposed to agents that inhibit platelet function by increasing the concentration of cyclic AMP, is the beta-subunit of GP Ib.  相似文献   

16.
Identification of the disulphide bonds in human platelet glycocalicin   总被引:1,自引:0,他引:1  
The glycoprotein Ib/IX complex on platelets is responsible for the first stage of haemostasis as an essential component in the primary adhesion of platelets to damaged vessel walls. Glycocalicin is the extracellular part of platelet glycoprotein Ib alpha and contains the von Willebrand factor and thrombin binding sites. Disulphide bonds are implicated in the von Willebrand binding site and studies with peptides point towards a region of glycocalicin with four cysteines as containing the binding sites for both von Willebrand factor and thrombin. The position and linkage of these two disulphide bonds are now determined to be 209-248 and 211-264 and the relevance of this double-loop structure for glycoprotein Ib/IX function is discussed.  相似文献   

17.
Biosynthesis of a glycosylated keratin by human keratinocytes   总被引:1,自引:0,他引:1  
Human keratinocytes, cultured in the presence of D-[1-14C]glucosamine, incorporated radioactivity into a cytoskeleton-associated glycoprotein with Mr 53,000. This glycoprotein co-purified with prekeratin when keratinocyte cytoskeletons were extracted with 0.1 M citric acid/0.1 M sodium citrate and subjected to isoelectric precipitation at pH 4.0. Analysis of the prekeratin polypeptides by two-dimensional gel electrophoresis revealed that the radioactivity was restricted to a single polypeptide with an isoelectric point in the pH range 4.5-5.5. Acid hydrolysis of prekeratin followed by paper chromatography of the hydrolysate showed that the radioactivity was incorporated as glucosamine and not by metabolic conversion to amino acids. Control experiments showed that the radioactivity associated with the glycoprotein of Mr 53,000 was not the result of adsorbed glycolipids or non-enzymatic labelling. In contrast to the incorporation of D-[1-14C]glucosamine and D-[6-3H]glucosamine, no appreciable amounts of L-[6-3H]fucose, D-[2-3H]mannose or 32PO4 were incorporated into this glycoprotein. The immunological relationship of the glycoprotein of Mr 53,000 to the keratins was demonstrated by its reactivity with both polyclonal and monoclonal antisera to keratin.  相似文献   

18.
The receptor on human neutrophils (polymorphonuclear leukocytes or PMN) that mediates cellular adherence has been purified from the peripheral blood PMN obtained from an individual with chronic myelogenous leukemia (CML). This receptor consists of two noncovalently associated subunits, designated alpha M (Mac-1 alpha, CD11b) (Mr = 170,000) and beta (Mac-1 beta, CDw18) (Mr = 100,000), respectively, which are identical on normal and CML PMN. The subunits were purified by monoclonal antibody 60.1-Sepharose (anti-alpha M) affinity chromatography and separated in 5-nmol quantities by high pressure liquid chromatography on a TSK-4000 gel filtration column. Subunits were characterized by amino acid composition, NH2-terminal amino acid sequence, and carbohydrate content. The NH2-terminal sequence of the human PMN alpha M subunit contains regions of homology with the human platelet glycoprotein IIb alpha. We conclude that nanomole amounts of individual alpha M and beta subunits of the receptor on human PMN that mediates cellular adherence can be isolated and separated using CML PMN.  相似文献   

19.
A glycoprotein of Mr 36 000 has been isolated from lung lavage of normal rabbit and purified to homogeneity by gel chromatography. Three peptides containing hydroxyproline and nearly 30% glycine have been isolated and purified from pepsin-digested native glycoprotein. Partial NH2-terminal amino acid sequence analysis on one of the peptides indicated the presence of -Gly-Pro-Hyp-Gly- sequence in the peptide chain, suggesting that collagen-like region(s) may be present in this glycoprotein.  相似文献   

20.
Experiments with the transmembrane (TM) domains of the glycoprotein (GP) Ib-IX complex have indicated that the associations between the TM domains of these subunits play an important role in the proper assembly of the complex. As a first step toward understanding these associations, we previously found that the Ibβ TM domain dimerized strongly in Escherichia coli cell membranes and led to Ibβ TM-CYTO (cytoplasmic domain) dimerization in the SDS-PAGE assay, while neither Ibα nor IX TM-CYTO was able to dimerize. In this study, we used the TOXCAT assay to probe the Ibβ TM domain dimerization interface by Ala- and Leu-scanning mutagenesis. Our results show that this interface is based on a leucine zipper-like heptad repeat pattern of amino acids. Mutating either one of polar residues Gln129 or His139 to Leu or Ala disrupted Ibβ TM dimerization dramatically, indicating that polar residues might form part of the leucine zipper-based dimerization interface. Furthermore, these specific mutational effects in the TOXCAT assay were confirmed in the thiol-disulfide exchange and SDS-PAGE assays. The computational modeling studies further revealed that the most likely leucine zipper interface involves hydrogen bonding of Gln129 and electrostatic interaction of the His139 side chain. Correlation of computer modeling results with experimental mutagenesis studies on the Ibβ TM domain may provide insights for understanding the role of the association of TM domains on the assembly of GP Ib-IX complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号