首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The germination behaviour of the seeds ofT. crystallina in relation to its frequent distribution in arid and semi-arid belt of Rajasthan has been investigated. In nature, the seed germination in this weed is definitely effected and to some extent controlled by certain features like light, environmental temperature fluctuations, germination temperature and seed age, and their complex effect seems to be responsible for the complex germination behaviour, and also for the common occurrence and distribution of this species in arid and semi-arid areas of low rainfall in Rajasthan and also in the dry habitats of Australia, Arabia and West Pakistan. The seeds possess endogenous seed coat inhibitor which is removed by washing with running water. Germination is also inhibited by total light and dark conditions, but for the diffused light. Constant low (10 °C) and high temperatures (40 °C and above) have also more or less deleterious effect on germination. However, if the seeds are given some intermittent treatment like low temperature (10 °C) or dilute acid (1%) before germination, they show better germination at slightly higher (35 or 40 °C) temperatures (64% and 40.3% respectively). The older seeds show a quick and higher germination percentage (89.6%) while fresh ones show a sufficiently poor percentage (36.3%) when both were germinated under uniform conditions of temperature (35 °C) and germination duration (96 hours). This is due to a slower moisture depletion and higher as well as faster water imbibition capability of old seeds than the fresh ones under identical treatments and conditions. Thus, the older seeds can retain more moisture for long than fresh seeds at all higher temperatures as the old seeds lose moisture slower than the fresh ones (87.2% and 91.6% respectively) when kept for drying under uniform conditions. The increase in water absorption after imbibition is faster in old seeds (48.4%) as compared to fresh ones (24.3%) and that the former which germinate faster, absorb two times more water than the latter when both are put for imbibition under similar conditions of temperature and duration.  相似文献   

2.
Nondormant A. caudatus seeds germinated in the darkat temperatures between 20 and 35° but not at 45 °C.Incubation at this temperature for at least 10 h inhibited seedgermination over the temperature range 20 to 35 °C,temperatures previously suitable for germination. Thus incubation at 45°C induced secondary dormancy. Mechanical or chemicalscarification or exposure to pure oxygen caused complete or almost completegermination of dormant seeds although more slowly in comparison to nondormantseeds. Secondary dormant scarified seeds required a lower concentration of ABAthan nondormant seeds to inhibit germination. The high temperature, whichinduced dormancy, 45 °C, caused the seed coat to be partiallyresponsible for secondary dormancy. Involvement of ABA (synthesis orsensitivity) in the induction and/or maintenance of this dormancy should beconsidered.  相似文献   

3.
The type of dormancy and conditions necessary for germination of Agaricus bisporus basidiospores were studied. Basidiospores failed to germinate on starvation agar and required the presence of carbon and nitrogen sources (asparagine and/or glucose) in the medium. Upon 3-week storage, basidiospores germinated after 4–5 days. Heat shock (20 min at 45°C) and decreased temperature facilitated activation of germination. Heterocyclic compounds stimulating germination of endogenously dormant spores, such as furfural, failed to activate germination. The data obtained suggested an endogenous dormancy of A. bisporus basidiospores differing from zygospores of Mucorales. Basidiospores contained 17–19% lipids with a composition of fatty acids differing from those of the pileus and stipe of the fruiting body. The soluble carbohydrates of the cytosol amounted to 12% dry spore weight and consisted of mannitol (74%) and trehalose (26%). Unlike basidiospores stored at 2°C, basidiospores stored for 5 months at 20°C lost their ability to germinate, which correlated with a decrease in the content of trehalose.  相似文献   

4.
The parameters which govern infection of rubber-vine weed by the rustMaravalia cryptostegiae were investigated. The infection process, from appressorial formation to sporulation, is described and illustrated. Uredinioid teliospores have an optimum temperature range for germination at 22–27 °C, both in vitro and in vivo. However, germination on the rubber-vine leaf was more than double (81–92%) that in the absence of the host, and appressoria were formed only in vivo. An optimum temperature of 20–22°C and a dew period of 12 hours or more gave the highest level of infection as measured by sporulation density. The latent period from inoculation to pustule formation decreased with increasing temperature; the shortest period (8–11 days) being recorded at 25–27°C. At the lower temperatures (18°C), this was significantly extended (19–21 days). Four successive inoculations significantly reduced plant height and dry weight, although a compensatory growth flush occurred after the third inoculation. The addition of cryoprotectants had a negative affect on spore viability and subsequent infectivity. Cooling dry spores to –196°C at the rate of 10°C min–1 gave the best results, with high germination (93–65%) up to 8 days after thawing.  相似文献   

5.
To analyse the potential reaction to firegenerated heat pulses, seeds of 12 species of plants and rhizomes of three species were exposed to elevated temperatures for 10 min. The tested material split into three groups with respect to heat tolerance: (1) the rhizomes, for which the lethal temperatures were in the range 55–59° C; (2) the seeds of most of the species tested, for which the lethal temperatures were in the range 65–75° C; (3) The seeds of two species of Leguminosae and three species of Geranium for which the lethal temperatures were around 100° C. For all three Geranium species and for one of the legume species, Anthyllis vulneraria, exposure temperatures above ca. 45° C resulted in dormancy release, and maximum germination occurred above 60–65° C. Speed of germination was little affected for most species, except after exposure to nearlethal temperatures, where it slowed down dramatically, although the seedlings emerging were healthy. We conclude that due to sharp temperature gradients in the soil during fire, differences in heat tolerance between species in most cases are not large enough to be a decisive factor in their post-fire colonising success. There are exceptions: the seeds of certain taxa that are impermeable to water in the dormant state, some of which have heat triggered germination.  相似文献   

6.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

7.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

8.
W.Z. Tan  Q.J. Li  L. Qing 《BioControl》2002,47(4):463-479
Alligatorweed (Alternanthera philoxeroidesG.) has become a serious weed in different crops in China. A fungal pathogen was found in Chongqing and Sichuan Provinces and was identified as a species in the Fusarium genus. The fungus produced macroconidia and chlamydospores abundantly on potato sucrose agar (PSA) plates. The bestconidial production and germination and colonygrowth of Fusarium sp. were at 23–31°C and pH 6.7–7.0. Light period and flooding did not affect fungal growth and conidium formation. The herbicides, glyphosate and paraquat, inhibited the fungal development in vitro. The fungus did not affect seed germination and seedling growth of paddy rice, wheat, maize, oilseed rape and broad bean inlaboratory or greenhouse trials. Inoculum density and wetness duration influenced the efficiency of Fusarium sp. to control alligatorweed; a concentration of 1.0 × 105 spores–1 ml and 12 h of high humidity duration after inoculation produced goodinfections on the weed at 23°C in the laboratory. When the fungus was applied to alligatorweed grown in greenhouse and in the field, good biocontrol efficiency was obtained: the plants started to wilt after four to five (greenhouse) or six days (field), and were killed 9–10 (greenhouse) or 13–14 (field) days after spraying the fungal inoculum. This was similar to the control efficiency resulting from glyphosate treatment. Therefore, this Fusarium sp. appeared to be a good candidatefor further studies and a promising biocontrol agent to manage alligatorweed in some terrestrial and aquatic crops.  相似文献   

9.
The kinetics of primary dormancy loss were investigated in seeds of horse chestnut (Aesculus hippocastanum L.) harvested in four different years. Freshly collected seeds from 1991 held for up to 1 year at temperatures between 2C and 42C exhibited two peaks in germination (radicle growth), representing a low temperature (2-8°C) and a high temperature response (31-36°C). Germination at 36°C generally occurred within 1 month of sowing, but was never fully expressed in the seedlots investigated. At low temperatures (2-8°C), germination started after around 4 months. Generally, very low levels of termination were observed at intermediate temperatures (11-26°C). Stratification at 6°C prior to germination at warmer temperatures increased the proportion of seeds that germinated, and the rate of germination for all seedlots. Within a harvest, germination percentage (on a probit scale) increased linearly with stratification time and this relationship was independent of germination temperature (16-26°C). However, inter-seasonal differences in the increases in germination capacity following chilling were observed, varying from 0.044 to 0.07 probits d-1 of chilling at 6°C. Increased sensitivity to chilling was associated with warmer temperatures during the period of seed filling. The estimated base temperature for germination, Tb, for newly harvested seeds varied slightly between collection years but was close to 25°C. For all seedlots, Tb decreased by 1°C every 6 d of chilling at 6°C. This systematic reduction in Tb with chilling ultimately facilitated germination at 6°C after dormancy release.  相似文献   

10.
The effects of equilibration under different air relative humidities (RH, 1 – 90 %) and temperatures (35 and 45 °C) on soybean (Glycine max) and wheat (Triticum aestivum) seeds were studied using different techniques. Seed moisture content, electrical conductivity (EC) of seed leachate and per cent seed germination were measured following standard procedures, and compared with nuclear magnetic resonance spin-spin relaxation time (T2) measurements. Moisture contents of soybean and wheat seeds, following the reverse sigmoidal trend, were greater at 35 than at 45 °C at any particular RH. Changes in T2 were related to the changes in germination percentage and leachate EC of both soybean and wheat seeds. Equilibrating soybean seeds at RH 11 % decreased germination percentage with corresponding decrease in T2. On the contrary, EC of seed leachate increased. In wheat seeds equilibrated at 45 °C, T2 was maximal at RH 5.5 %. T2 declined in seeds equilibrated at high RH (> 80 %) together with low germination percentage.  相似文献   

11.
Summary Laboratory-stored seeds ofDiamorpha cymosa (Nutt.) Britton (Crassulaceae) were germinated at monthly intervals starting shortly after maturity in late May and ending at approximately the time germination is completed in the field (November). Seeds were placed at 5, 10, 15, 20, 25, 30, 15/6, 20/10, 30/15 and 35/20°C at a 14-hr photoperiod (12/12 hr thermoperiods at the alternating temperature regimes) and in constant darkness. In June, seeds were almost completely dormant and thus germinated poorly or not at all under all conditions. As seeds aged from late May to November 1. germination at the 14-hr photoperiod increased in rate and total percentage, 2. the maximum germination temperature increased from 15 to 25°C at constant temperatures and from 20/10 to 30/15°C at the alternating temperature regimes and 3. the optimum temperature for germination increased from 15 to 15–20°C at constant temperatures but remained at20/10°C at alternating temperature regimes throughout the study. During the same period germination in constant darkness was negligible at constant and alternating temperature regimes. This pattern of physiological after-ripening apparently is an adaptation to summer-dry,winter-wet habitats such as rock outcrops of southeastern United States.A short period of illumination with white light given after a 12-hr imbibition period in darkness promoted germination in the dark at 25/10°C but not at 15 or 25°C. A short period of illumination given during the imbibition period was much less effective in promoting germination in the dark. Drying up to 7 days did not cause light-stimulated seeds to lose their ability to germinate in darkness. The light requirement for seed germination probably does not play a role in restrictingD. cymosa to its well-lighted habitats on granite and sandstone outcrops.This research was supported by funds from the University of Kentucky Research Foundation and by an NIH Biomedical Sciences Support Grant to the University of Kentucky.  相似文献   

12.
Effect of high temperatures on seed germination of two woody Leguminosae   总被引:3,自引:0,他引:3  
Cytisus scoparius and Genista florida regenerate after fire by stump-sprouting but also by seed. Seeds of these species were heated to a range of temperatures similar to those registered on the surface soil during natural fires (from 50 to 150 °C) and a range of exposure times (from 1 to 15 min). No germination was observed at high temperatures, 130 °C, when the exposure time was 5 min or more. However, moderate heat treatments (at 70 and 100 °C) significantly increased the rate of germination relative to controls. Cytisus scoparius is more favoured by fire action than Genista florida, with germination rates slightly greater following 100 °C for 5 min and 130 °C for 1 min than after mechanical scarification.  相似文献   

13.
Summary The role of temperature in the regulation of seasonal changes in dormancy and germination was studied in seeds of Polygonum persicaria. Seeds were buried in the field and under controlled conditions. Portions of seeds were exhumed at regular intervals and germination was tested over a range of conditions. Seeds of P. persicaria exhibited a seasonal dormancy pattern that clearly showed the typical features of summer annuals, i.e. dormancy was relieved at low winter temperatures, the germination peak occurred in spring and dormancy was re-induced in summer. The expression of the dormancy pattern was influenced by the temperature at which germination was tested. At 30°C exhumed seeds germinated over a much longer period of the year than at 20° or 10°C. Nitrate added during the germination test occasionally stimulated germination. The seasonal changes in dormancy of buried seeds were regulated by the field temperature. Soil moisture and nitrate content did not influence the changes in dormancy. The fact that, on the one hand, field temperature determined the changes in dormancy and, on the other hand, germination itself was influenced by temperature, was used to describe the seasonal germination pattern of P. persicaria with a model. Germination of exhumed seeds in Petri dishes at field temperature was accurately described with this model. Germination in the field was restricted to the period where the range of temperatures over which germination could proceed (computed with the model) and field temperature overlapped.  相似文献   

14.
The paper deals with the influence of temperature on the growth and sporulation of two species ofPhytophthora, viz.,P. palmivora Butl. andP. parasitica Dast. var.macrospora Ashby, the causal agents of fruit rots ofAchras sapota L. andAnona squamosa L. respectively. Germination of sporangia at different temperatures were also undertaken. There was marked variation in growth and sporulation of these two organisms. Isolate C (Phytophthora palmivora) showed no growth at 5° and 35°C, scanty growth at 10° and 32.5° with an optimum temperature between 26–28°C. On the other hand, Isolate S (Phytophthora parasitica var.macroscora) showed no growth at 10°C, but slight growth even at 37°C. Eight days exposure at 37°C completely stopped the growth of this Isolate. It showed best growth at 30°C and hence this was its optimum temperature. In general, Isolate C sporulated abundantly at all temperatures tested but reached its maximum at 25°C. On the other hand Isolate S showed best growth but failed to sporulate at any of the temperatures in 98 hours growth, although it sporulated freely when the incubation period extended up to two weeks. On the basis of temperature toleration the twoPhytophthora isolates are distinguished from each other as two different species. This confirms the earlier observations and nomenclature criterion as emphasized and formulated byTucker (1931). In the germination studies, it was observed that the indirect germination with the formation of abundant zoospores started from 5° and continued even up to 35°C, reaching maximum at 20°C. High temperature was not favourable for indirect germination. As the temperature proceeded increasing, the percentage of direct germination by formation of germ tubes also increased. Direct germination was observed from 10° which continued up to 37°C, with a maximum reach at 30°C. This confirms the epidemic of fruit rots in nature during monsoon season which is prevalent with the persistence of high humidity and rainfall.Taken from a thesis submitted by the author for the degree of Master of Science in the Faculty of Agriculture, Poona University, India.  相似文献   

15.
The seeds of Paris polyphylla var. yunnanensis are deeply dormant, and they remain dormant for 18 months or longer in their natural environment. Periodic exposure of the seeds to a low-temperature of 4 °C broke the dormancy in about 16 weeks (112 days). The most effective temperature stratification scheme was an interval of 14 days at 4 °C and 14 days at 22 °C. Both GA3 and ethephon significantly enhanced the germination rate during the stratification treatment. The seed coat, particularly the mesophyll outer layer of the seed coat, strongly inhibited the germination. With removal of the seed coat and exposure of the uncoated seeds to 600 mg/l GA3 for 48 h before the temperature stratification of 14 days at 4 °C and 14 days at 22 °C for 112 days, a germination percentage as high as 95.3% of the seeds was attained in about 160 days.  相似文献   

16.
Gemmules of Anheteromeyenia ryderi survived 24 h exposure to air temperatures as low as –20 °C under laboratory conditions. Drying the gemmules of A. ryderi at 5 °C under laboratory conditions resulted in a reduced viability and a slower germination rate following rehydration compared with undried control gemmules. Only 25% of the gemmules germinated after drying for one month. Up to 25% of the gemmules of A. ryderi that were tested survived aerial exposure from early November to early April when a pond in Connecticut inhabited by this sponge was drained. During this period air temperatures dropped to as low as –16 °C. Continued aerial exposure of the gemmules during the summer resulted in nearly complete gemmule mortality.  相似文献   

17.
Influence of salinity and temperature on the germination of Kochia scoparia   总被引:1,自引:0,他引:1  
Kochia scoparia is one of the most common annual halophytes foundin the Great Basin. Seeds were collected from a population growing in asalt playa at Faust, Utah and were germinated at 5 temperature regimes(12 h night/12 h day, 5–15 °C, 10–20 °C, 15–25 °C,20–30 °C and 25–35 °C) and 6 salinities (0, 200, 400,600, 800 and 1000 mM NaCl) to determine optimal conditions forgermination and recovery of germination from saline conditions after beingtransferred to distilled water. Maximum germination occurred in distilledwater, and an increase in NaCl concentration progressively inhibited seedgermination. Few seeds germinated at 1000 mM NaCl. A temperatureregime of 25 °C night and 35 °C day yielded maximumgermination. Cooler temperature 5–15 °C significantly inhibited seedgermination. Rate of germination decreased with increase in salinity.Germination rate was highest at 25–35 °C and lowest at5–15 °C. Seeds were transferred from salt solutions to distilled waterafter 20 days and those from high salinities recovered quickly at warmertemperature regimes. Final recovery germination percentages in high salttreatments were high, indicating that exposure to high concentration ofNaCl did not inhibit germination permanently.  相似文献   

18.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

19.
The rust fungusPuccinia abruptavar.partheniicola,a potential biological control agent of parthenium weed (Parthenium hysterophorus), was evaluated under controlled environmental conditions. A range of spore germination temperatures as well as dew period durations and temperatures were investigated to determine some of the environmental requirements for disease establishment and disease progress. Plants were inoculated with urediniospores and exposed to dew periods between 3 to 12 h at temperatures of 10, 15, or 20°C. For disease expression, the inoculated plants were then grown in a glasshouse at one of two temperature regimes (30/26°C or 18/13°C; day/night). Urediniospores germinated best at 12 ± 1°C, with lower germination rates at 5°C or above 20°C. No infection occurred when the plants were exposed to dew periods of ≤3 h, regardless of the incubation temperature. The disease progressed most rapidly when plants were inoculated and incubated for a dew period of at least 12 h at a temperature of 15 ± 1°C. The disease progressed most slowly following inoculation at dew periods of 6 h or less. Disease progress was more rapid when the plants were exposed to a cool-temperature regime (18/13°C) than when exposed to a warm-temperature regime (30/26°C). This suggests that good infection of parthenium weed could be obtained when the urediniospores arrive on the plants during the afternoon in the cooler months of the central Queensland autumn when relatively long dew periods are expected.  相似文献   

20.
Summary The in vitro culture of pine pollen at various temperatures reveals only a moderate degree of thermotolerance, with considerably reduced levels of growth at and above 35° C. Unlike the pollen of many previously studied species, pine pollen shows some ability to recover from short periods of growth at temperatures as high as 40° C, especially when such exposures occur during the early stages of pollen germination. The pollen of Pinus taeda, unlike that of most other species, shows both quantitative and qualitative changes in the proteins synthesized during germination in vitro following a switch to elevated temperatures (37° C). This response, which can be elicited both during the very early stages of germination as well as during the later stages of pollen tube growth, is reversible following a shift back to the lower temperatures. As previously shown with vegetative tissue of other plant species, the heat-shock response not only involves the induction of high-molecular-weight proteins (most notably 82 kDa and 70 kDa proteins), but also a number of low-molecular-weight (10–20 kDa) species. Two-dimensional gel electrophoretic analysis reveals a small number of qualitative differences in the types of low-molecular-weight heat-shock proteins synthesized in pollen versus vegetative tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号