首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: How do studies of the distribution of genetic diversity of species with different life forms contribute to the development of conservation strategies? Location: Old‐growth forests of the southeastern United States. Methods: Reviews of the plant allozyme literature are used to identify differences in genetic diversity and structure among species with different life forms, distributions and breeding systems. The general results are illustrated by case studies of four plant species characteristic of two widespread old‐growth forest communities of the southeastern United States: the Pinus palustris – Aristida stricta (Longleaf pine – wiregrass) savanna of the Coastal Plain and the Quercus – Carya – Pinus (Oak‐hickory‐pine) forest of the Piedmont. Genetic variation patterns of single‐gene and quantitative traits are also reviewed. Results: Dominant forest trees, represented by Pinus palustris(longleaf pine) and Quercus rubra (Northern red oak), maintain most of their genetic diversity within their populations whereas a higher proportion of the genetic diversity of herbaceous understorey species such as Sarracenia leucophylla and Trillium reliquum is distributed among their populations. The herbaceous species also tend to have more population‐to‐population variation in genetic diversity. Higher genetic differentiation among populations is seen for quantitative traits than for allozyme traits, indicating that interpopulation variation in quantitative traits is influenced by natural selection. Conclusion: Developing effective conservation strategies for one or a few species may not prove adequate for species with other combinations of traits. Given suitable empirical studies, it should be possible to design efficient conservation programs that maintain natural levels of genetic diversity within species of conservation interest.  相似文献   

2.
Breeding programs to conserve diversity are predicated on the assumption that genetic variation in adaptively important traits will be lost in parallel to the loss of variation at neutral loci. To test this assumption, we monitored quantitative traits across 18 generations of Peromyscus leucopus mice propagated with protocols that mirror breeding programs for threatened species. Ears, hind feet, and tails became shorter, but changes were reversible by outcrossing and therefore were due to accumulated inbreeding. Heritability of ear length decreased, because of an increase in phenotypic variance rather than the expected decrease in additive genetic variance. Additive genetic variance in hind foot length increased. This trait initially had low heritability but large dominance or common environmental variance contributing to resemblance among full-sibs. The increase in the additive component indicates that there was conversion of interaction variances to additive variance. For no trait did additive genetic variation decrease significantly across generations. These findings indicate that the restructuring of genetic variance that occurs with genetic drift and novel selection in captivity can prevent or delay the loss of phenotypic and heritable variation, providing variation on which selection can act to adapt populations to captivity and perhaps later to readapt to more natural habitats after release. Therefore, the importance of minimizing loss of gene diversity from conservation breeding programs for threatened wildlife species might lie in preventing immediate reduction in individual fitness due to inbreeding and protecting allelic diversity for long-term evolutionary change, more so than in protecting variation in quantitative traits for rapid re-adaptation to wild environments.  相似文献   

3.
Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.  相似文献   

4.
Programs for monitoring biological diversity over time are needed to detect changes that can constitute threats to biological resources. The convention on biological diversity regards effective monitoring as necessary to halt the ongoing erosion of biological variation, and such programs at the ecosystem and species levels are enforced in several countries. However, at the level of genetic biodiversity, little has been accomplished, and monitoring programs need to be developed. We define “conservation genetic monitoring” to imply the systematic, temporal study of genetic variation within particular species/populations with the aim to detect changes that indicate compromise or loss of such diversity. We also (i) identify basic starting points for conservation genetic monitoring, (ii) review the availability of such information using Sweden as an example, (iii) suggest categories of species for pilot monitoring programs, and (iv) identify some scientific and logistic issues that need to be addressed in the context of conservation genetic monitoring. We suggest that such programs are particularly warranted for species subject to large scale enhancement and harvest—operations that are known to potentially alter the genetic composition and reduce the variability of populations.  相似文献   

5.
The recycling of elite inbreds (i.e., advanced cycle breeding) has led to significant genetic gains but also to a narrow gene pool in plant breeding programs. Sustained yield improvements in many crops have suggested that genetic variance is not depleted at a rate predicted by an additive genetic model. Unlike the additive model in classical quantitative genetic theory, metabolic control analysis relates the variation in a biochemical process with the genetic variation in a quantitative trait. Our objective was to determine whether metabolic control analysis is a mechanism that slows the decrease in genetic variance during advanced cycle breeding. Three cycles of advanced cycle breeding were simulated with 10, 50, or 100 quantitative trait loci (QTL) controlling a trait. In metabolic control analysis, these QTL coded for enzymes involved in a linear metabolic pathway that converted a substrate into a product. In the absence of selection, both the additive model and the metabolic control analysis model led to about a 50% reduction in genetic variance from cycle to cycle. With selection, the additive model led to a 50–58% reduction in genetic variance, but the metabolic control analysis model generally led to only a 12–54% reduction. We suggest selection in a metabolic control analysis model as a mechanism that slows the decrease in genetic variance during advanced cycle breeding. This conservation of genetic variance would allow breeders to achieve genetic gains for a longer period than expected under the additive model.Communicated by H.C. Becker  相似文献   

6.
重要物种优先保护种群的确定   总被引:10,自引:0,他引:10  
由于同一物种不同种群的重要性不同、用于物种保护的资金有限以及保护与发展经济之间的矛盾,因此对于重要物种(尤其是濒危种类以及农作物和驯化动物的野生近缘种)需要确定保护什么以及保护哪儿。目前确定优先保护种群的方法主要有3类,分别为基于遗传变异、基于遗传差异性和基于遗传贡献率的方法。基于遗传变异的方法主要是根据遗传变异程度(尤其是等位基因多样性)来确定优先保护的顺序,但忽略了种群之间的遗传差异性,这容易使得存在于遗传变异程度较低的种群中的特有等位基因得不到有效保护。而基于遗传差异性的方法(如确定进化显著单元)则是从遗传分化程度的角度考虑优先性,即独特性越强的种群越具有保护价值。基于遗传贡献率的方法由于综合考虑了遗传多样性和差异性,最适合于确定哪些种群需要优先保护。我国开展此类研究十分必要。  相似文献   

7.
In many applications of population genetics, particularly in the field of conservation biology, estimates of molecular diversity are used as surrogate indicators of less easily acquired measures of genetic variation for quantitative traits. The general validity of this approach to inferring levels of quantitative genetic variation within populations is called into question by the demonstration that estimates of molecular and quantitative-genetic variation are essentially uncorrelated in natural populations of Daphnia, one of the few organisms for which multiple estimates of both quantities are available. On the other hand, molecular measures of population subdivision seem to give conservatively low estimates of the degree of genetic subdivision at the level of quantitative traits. This suggests that although molecular markers provide little information on the level of genetic variation for quantitative traits within populations, they may be valid indicators of population subdivision for such characters.  相似文献   

8.
Restocking and stock enhancement programs are now recognized as an important tool for the management of fishery resources. It is important, however, to have an adequate knowledge on the genetic population structure of both the released stock and the wild population before carrying out such programs. In this study, random amplified polymorphic DNA (RAPD) markers were applied to assess genetic diversity and population structure of wild and hatchery populations of the white seabreamDiplodus sargus and the common two-banded seabreamD. vulgaris (Sparidae). The estimated values for intrapopulation genetic variation, measured using the percentage of polymorphic loci (%P), Shannon indexH’, and Nei’s gene diversity (h), showed high values for all populations. The percentage of genetic variation withinD. sargus andD. vulgaris populations, based on coefficient of gene differentiation, reached 82.5% and 90% of the total genetic variation, respectively. An undeniable decrease in genetic variation was found in both hatchery populations, particularly inD. sargus, compared to the wild ones. However, the high values of variation within all populations and the low levels of genetic variation among populations did not indicate inbreeding or depression effects, thus indicating a fairly proper hatchery management. Nevertheless, the results of this study highlight the importance of monitoring the genetic variation of hatchery populations, particularly those to be used in restocking programs. The creation of a genetic baseline database will contribute to a more efficient conservation management and to the design of genetically sustainable restocking programs.  相似文献   

9.
Most studies of genetic variation within species to date are based on random markers. However, how well this correlates with quantitative variation is contentious. Yet, functional, or'ecotypic' variation in quantitative traits determines the ecological niche of a species, its future evolutionary potential, and, for livestock, crops and their wild relatives, their usefulness as a genetic resource for breeding. But nowadays we can also assess genetic diversity using markers directly targeted at specific genes or gene families. Such gene-targeted, multilocus profiles of markers can contribute to ex-situ management of genetic resources, ecological studies of diversity, and conservation of endangered species.  相似文献   

10.
The adaptive potential of populations and therefore their ability to cope with rapid environmental changes is a question of paramount fundamental and applied importance. However, what is still not clear is the effect of population position within the species range (i.e. core vs. edge) on population adaptive potential, and whether the adaptive potential can be predicted from extent of neutral molecular variation. In this study, we compared the extent and structure of neutral (SSR) and presumably adaptive quantitative trait genetic variation in populations of Triticum dicoccoides sampled at the species range core and two opposite edges, and related this information to multigenerational performance of plants experimentally introduced beyond the range edge. The plants from the species arid edge performed worse than plants from the more mesic core in extreme desert conditions. The core and edge populations did not differ in extent of SSR variation. In contrast to the neutral genetic variation, there was lower quantitative trait variation in the two edge as compared with the core population for many traits, and no trait in any edge population had higher variation than the core population or either of its habitats. Reduced variation in selectively important traits indicates a lower adaptive potential of the two edge as compared with the core population. Our results imply (1) that extent of variation in quantitative traits can predict plant performance in novel environments while extent of variation in molecular markers can not; and (2) caution in usage of peripheral populations in such conservation actions as relocation and creation of new populations. We also warn against usage of neutral molecular variation as a surrogate for selectively important quantitative variation in conservation decisions.  相似文献   

11.
Knowledge of the effects of flooding on plant survival is relevant for the efficiency of management and conservation programs. Schinus terebinthifolius is a tree of economic and ecological importance that is common in northeast Brazil. Flooding tolerance and genetic variation were investigated in two riparian populations of S. terebinthifolius distributed along two different ecological regions of the Tibagi River basin. Flooding tolerance was evaluated through the investigation of young plants, submitted to different flooding intensities to examine the morphological and anatomical responses to this stress. The growth rate of S. terebinthifolius was not affected by flooding, but total submersion proved to be lethal for 100% of the plants. Morphological alterations such as hypertrophied lenticels were observed in both populations and lenticel openings were significantly higher in plants from one population. Genetic analysis using DNA samples obtained from both populations showed a moderate degree of genetic variation between populations (13.7%); most of the variation was found within populations (86.3%). These results show that for conservation purposes and management of degraded areas, both populations should be preserved and could be used in programs that intend to recompose riparian forests.  相似文献   

12.
We review the available tools for analysing genetic diversity in conservation programmes of subdivided populations. Ways for establishing conservation priorities have been developed in the context of livestock populations, both from the classical population genetic analysis and from the more recent Weitzman's approach. We discuss different reasons to emphasize either within or between-population variation in conservation decisions and the methodology to establish some compromise. The comparison between neutral and quantitative variation is reviewed from both theoretical and empirical points of view, and the different procedures for the dynamic management of conserved subdivided populations are discussed.  相似文献   

13.
Wild germplasm of domesticated crops is a source of genetic variation little utilized in breeding programs. Interspecific crosses can potentially uncover novel gene combinations that can be important for quantitative trait analysis. The combined use of wide crosses and genetic maps of chromosomal regions associated with quantitative traits can be used to broaden the genetic basis of rice breeding programs. Oryza glumaepatula is a diploid (AA genome) wild rice species native from South and Central America. A genetic map was constructed with 162 PCR-based markers (155 microsatellite and 7 STS markers) using a backcross population derived from the cross O. glumaepatula, accession RS-16 from the Brazilian Amazon Region x O. sativa BG-90-2, an elite rice inbred line. The map included 47 new SSR markers developed from an O. glumaepatula genomic library enriched for AG/TC sequences. All SSR markers were able to amplify the O. sativa genome, indicating a high degree of SSR flanking region conservation between O. glumaepatula and O. sativa species. The map covered 1500.4 cM, with an average of one marker every 10 cM. Despite some chromosomes being more densely mapped, the overall coverage was similar to other maps developed for rice. The advantage to construct a SSR-based map is to permit the combination of the speed of the PCR reaction, and the codominant nature of the SSR marker, facilitating the QTL analysis and marker assisted selection for rice breeding programs.  相似文献   

14.
In this paper, we describe the utility of microsatellite data and genetic pedigree information to guide the genetic management of two long-term conservation programs for endangered populations of salmon: Snake River Sockeye Salmon, Oncorhynchus nerka, and inner Bay of Fundy Atlantic Salmon, Salmo salar. Both programs are captive broodstock (live gene banking) programs for endangered populations of salmon. In order for these programs to be successful for recovery efforts, genetic change, including accumulation of inbreeding, loss of genetic variation, and adaptation to captivity, must be minimized. We provide an overview of each program, describe broodstock selection and pairing for spawning, and discuss how pedigree data are being used to evaluate different management practices. While there are inherent species and programmatic differences, both of these programs use widely accepted genetic conservation strategies (minimize mean kinship, reduce variance in family size, minimize inbreeding in the next generation, maintain large census and effective population size) to potentially mitigate some unintended side-effects associated with the rearing of small populations in captivity. These case studies highlight the benefits and practical limitations of applying these strategies in the genetic management of salmon, and may be used to inform other conservation programs.  相似文献   

15.
Labeo rohita, popularly known as rohu is a widely cultured species in the whole Indian subcontinent. Knowledge of the genetic diversity of this species is important to support management and conservation programs which will subsequently help in sustainable production of this species. DNA markers, mostly microsatellite markers are excellent tool to evaluate genetic variation of populations. Genetic variation of three wild and one farm population was assessed using eleven microsatellite loci. In analyzing 192 samples, the number of alleles ranged from 4 to 23; observed heterozygosity 0.500 to 0.870 and expected heterozygosity from 0.389 to 0.878. Exact test for Hardy Weinberg disequilibrium revealed that each riverine sample had at least one locus not in equilibrium except one river. Negative inbreeding coefficients (FIS) were observed across populations indicating very high level of genetic diversity but little genetic differentiation among populations.  相似文献   

16.
17.
分子标记在濒危物种保护中的应用   总被引:1,自引:0,他引:1  
分子标记可揭示种群遗传和进化信息, 为制定濒危物种保护措施、指导恢复实践提供重要依据。本文主要介绍了分子标记在濒危物种保护过程不同环节中的应用, 包括: (1)正确识别保护单元, 如排除隐存种和杂交种的影响; (2)确定优先保护单元, 包括优先保护区域、优先保护物种、优先保护种群等; (3)指导迁地保护; (4)对保护工作的动态监测和评估。文章最后探讨了分子标记应用于保护的发展方向, 如开展长期的种群遗传组成监测、切实应用于保护管理实践、将基因组学等遗传信息用于全球变化背景下保护策略的制定等, 期望为分子标记技术在生物多样性保护的研究和实践中提供参考。  相似文献   

18.
K Theodorou  D Couvet 《Heredity》2015,114(1):38-47
Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs.  相似文献   

19.
Each year salmon and other fishes are caught and used for supportive breeding programs that attempt to augment natural populations that are threatened with extinction. These programs typically mate individuals randomly and as such they overlook the importance of genetic quality to offspring fitness and ultimately to ensuring population health. Here, we use Chinook salmon (Oncorhynchus tshawytscha) and a fully crossed quantitative genetic breeding design to partition genetic variance in offspring performance (growth and survival) to additive and non-additive genetic effects as well as maternal effects. We show that these three effects contribute about equally to the variation in survival, but only non-additive genetic and maternal effects contribute to variation in growth. Some of the genetic effects could be assigned to variation at the class IIB locus of the major histocompatibility complex, but the maternal effects were not associated with egg size and we found no relationship between dam phenotypic measures and offspring survival or growth. We also found no relationship between sire sexually selected characters and offspring survival or growth, which is inconsistent with a “good genes” hypothesis. Finally, we show that incorporation of genetic quality into supportive breeding programs can increase offspring growth or survival by between 3% and 19% during the endogenous feeding stage alone, and projections to adulthood suggest that survivorship could be over four fold higher. Electronic Supplementary Material  Supplementary material is available in the online version of this article at and is accessible for authorised users.  相似文献   

20.
Byers DL 《Genetica》2005,123(1-2):107-124
The maintenance of genetic variation in traits of adaptive significance has been a major dilemma of evolutionary biology. Considering the pattern of increased genetic variation associated with environmental clines and heterogeneous environments, selection in heterogeneous environments has been proposed to facilitate the maintenance of genetic variation. Some models examining whether genetic variation can be maintained, in heterogeneous environments are reviewed. Genetic mechanisms that constrain evolution in quantitative genetic traits indicate that genetic variation can be maintained but when is not clear. Furthermore, no comprehensive models have been developed, likely due to the genetic and environmental complexity of this issue. Therefore, I have suggested two empirical approaches to provide insight for future theoretical and empirical research. Traditional path analysis has been a very powerful approach for understanding phenotypic selection. However, it requires substantial information on the biology of the study system to construct a causal model and alternatives. Exploratory path analysis is a data driven approach that uses the statistical relationships in the data to construct a set of models. For example, it can be used for understanding phenotypic selection in different environments, where there is no prior information to develop path models in the different environments. Data from Brassica rapa grown in different nutrients indicated that selection changed in the different environments. Experimental evolutionary studies will provide direct tests as to when genetic variation is maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号