首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3-primer PCR system was developed to discriminate invasive zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel. The system is based on: 1) universal primers that amplifies a region of the nuclear 28s rDNA gene from both species and 2) a species-specific primer complementary to either zebra or quagga mussel. The species-specific primers bind to sequences between the binding sites for the universal primers resulting in the amplification of two products from the target species and one product from the nontarget species. Therefore, nontarget products are positive amplification controls. The 3-primer system accurately discriminated zebra and quagga mussels from seven geographically distinct populations.  相似文献   

2.
Diagnostic genetic markers from 486 aligned nucleotide sequences of mitochondrial 16S ribosomal DNA were developed for the four closely related species of dreissenoid and corbiculoid bivalves that have invaded North America; the zebra mussel Dreissena polymorpha, the quagga mussel D. bugensis, and the dark false mussel Mytilopsis leucophaeata of the superfamily Dreissenoidea, and the Asian clam Corbicula fluminea of the sister superfamily Corbiculoidea. Evolutionary relationships were examined among the four genera and comparisons were made with native Eurasian populations of D. polymorpha and D. bugensis. Tests were conducted for gender-specific mitochondrial lineages, which occur in some other bivalves. Genetic variability and divergence rates were tested between stem (paired) and loop (unpaired) regions of secondary structure. There were 251 variable nucleotide sites, of which 99 were phylogenetically informative. Overall transition to transversion ratio was 0.76:1.00 and both accumulated linearly in stem and loop regions, suggesting appropriate phylogenetic signal. Genetic distance calibration with the fossil record estimated the pairwise sequence divergence as 0. 0057 +/- 0.0004 per million years. Mytilopsis and Dreissena appear to have diverged about 20.7 +/- 2.7 million years ago. D. bugensis and D. polymorpha appear separated by about 13.2 +/- 2.2 million years. No intraspecific variation was found, including between Eurasian and North American populations, among shallow and deep morphotypes of D. bugensis and between the sexes. Restriction endonuclease markers were developed to distinguish among the species at all life history stages, allowing rapid identification in areas of sympatric distribution.  相似文献   

3.
SUMMARY 1. Zebra mussels ( Dreissena polymorpha ) have established a much greater range in North America and Europe than quagga mussels ( D. bugensis ), which occupy a very similar niche.
2. We hypothesised that quaggas are physiologically capable of sustaining populations in warmer rivers currently occupied only by zebra mussels and that unidentified, non-physiological factors account for their more limited distribution.
3. Growth and survival of individually tagged mussels (976 D. bugensis from Lake Erie; 2625 D. polymorpha from Lake Erie and the Ohio River) were recorded monthly for up to 15 months in an outdoor stream mesocosm receiving unfiltered water from the Ohio River.
4. Extreme temperatures stressed both species; but in contrast to several previous laboratory studies, quaggas survived high temperatures better than zebra mussels. We suspect this was the result of species-specific differences in their ability to obtain, assimilate and/or catabolise food at high, sublethal temperatures.
5. A unimodal growth pattern was observed in both species, with the highest growth rates from late spring to early autumn.
6. Our survival and growth data suggest that quaggas are not physiologically limited from expanding southward.
7. While lacking definitive proof that dreissenid populations in rivers are ecologically sustainable without upstream lentic ecosystems and/or unintended human intervention, we suggest that complex river currents and upstream retentive and highly productive slackwater habitats in rivers may help sustain downstream populations of these meroplanktonic, dreissenid mussels.  相似文献   

4.
Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis ) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena ). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena , but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods ( Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates.  相似文献   

5.
The quagga mussel (Dreissena rostriformis bugensis) and zebra mussel (Dreissena polymorpha) are invasive freshwater bivalves in Europe and North America. The distribution range of both Dreissena species is still expanding and both species cause major biofouling and ecological effects, in particular when they invade new areas. In order to assess the effect of temperature, salinity and light on the initial byssogenesis of both species, 24 h re-attachment experiments in standing water were conducted. At a water temperature of 25°C and a salinity of 0.2 psu, the rate of byssogenesis of D. polymorpha was significantly higher than that of D. rostriformis bugensis. In addition, byssal thread production by the latter levelled out between 15°C and 25°C. The rate of byssogenesis at temperatures<25°C was similar for both species. Neither species produced any byssal threads at salinities of 4 psu or higher. At a salinity of 1 psu and a water temperature of 15°C, D. polymorpha produced significantly more byssal threads than D. rostriformis bugensis. There was no significant effect of the length of illumination on the byssogenesis of either species. Overall, D. polymorpha produced slightly more byssal threads than D. rostriformis bugensis at almost all experimental conditions in 24 h re-attachment experiments, but both species had essentially similar initial re-attachment abilities. The data imply that D. rostriformis bugensis causes biofouling problems identical to those of D. polymorpha.  相似文献   

6.
This study tests population genetic patterns across the Eurasian dreissenid mussel invasions of North America—encompassing the zebra mussel Dreissena polymorpha (1986 detection) and the quagga mussel D. rostriformis bugensis (detected in 1990, which now has largely displaced the former in the Great Lakes). We evaluate their source-spread relationships and invasion genetics using 9–11 nuclear microsatellite loci for 583 zebra mussels (21 sites) and 269 quagga mussels (12 sites) from Eurasian and North American range locations, with the latter including the Great Lakes, Mississippi River basin, Atlantic coastal waterways, Colorado River system, and California reservoirs. Additionally, mtDNA cytochrome b gene sequences are used to verify species identity. Our results indicate that North American zebra mussels originate from multiple non-native northern European populations, whereas North American quagga mussels trace to native estuaries in the Southern Bug and Dnieper Rivers. Invasive populations of both species show considerable genetic diversity and structure (zebra F ST = 0.006–0.263, quagga F ST = 0.008–0.267), without founder effects. Most newer zebra mussel populations have appreciable genetic diversity, whereas quagga mussel populations from the Colorado River and California show some founder effects. The population genetic composition of both species changed over time at given sites; with some adding alleles from adjacent populations, some losing them, and all retaining closest similarity to their original composition. Zebra mussels from Kansas and California appear genetically similar and assign to a possible origin from the St. Lawrence River, whereas quagga mussels from Nevada and California assign to a possible origin from Lake Ontario. These assignments suggest that overland colonization pathways via recreational boats do not necessarily reflect the most proximate connections. In conclusion, our microsatellite results comprise a valuable baseline for resolving present and future dreissenid mussel invasion pathways.  相似文献   

7.
8.
The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency indicate that all invasive populations of zebra mussels from North America and Europe originated from the Ponto-Caspian Sea region. The distribution of haplotypes was consistent with invasive populations arising from the Black Sea drainage, but could not exclude the possibility of an origin from the Caspian Sea drainage. Similar haplotype frequencies among North American populations of D. polymorpha suggest colonization by a single founding population. There was no evidence of invasive populations arising from tectonic lakes in Turkey, while lakes in Greece and Macedonia contained only Dreissena stankovici. Populations in Turkey might be members of a sibling species complex of D. polymorpha. Ponto-Caspian derived populations of D. polymorpha (theta = 0.0011) and Dreissena bugensis (one haplotype) exhibited low levels of genetic diversity at the COI gene, perhaps as a result of repeated population bottlenecks. In contrast, geographically isolated tectonic lake populations exhibited relatively high levels of genetic diversity (theta = 0.0032 to 0.0134). It is possible that the fluctuating environment of the Ponto-Caspian basin facilitated the colonizing habit of invasive populations of D. polymorpha and D. bugensis. Our findings were concordant with the general trend of destructive freshwater invaders in the Great Lakes arising from the Ponto-Caspian Sea basin.  相似文献   

9.
Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75–100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size–frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America.  相似文献   

10.
The recent spread of dreissenid mussels to various bodies of water in the western US has sparked interest by many state and federal agencies to develop protocols to stop further expansion. Quagga mussels (Dreissena rostriformis bugensis) are of particular importance as they are currently the most widespread dreissenid species in the region. This project examined the susceptibility of quagga mussels to hot-water sprays at different temperatures and durations of spray contact at Lake Mead (Nevada-Arizona, USA). Emersed adult quagga mussels were exposed to hot-water sprays at 20, 40, 50, 54, 60, 70, and 80°C for 1, 2, 5, 10, 20, 40, 80, and 160 s. Sprays at ≥60°C for 5 s were shown to be 100% lethal. Sprays of 54°C for 10 s, 50°C for 20 s, and 40°C for 40 s also resulted in 100% mortality. A spray temperature of 60°C for 5 s is recommended for mitigating fouling by quagga mussels.  相似文献   

11.
The zebra mussel (Dreissena polymorpha) and its congener the quagga mussel (Dreissena rostriformis bugensis) are both invaders in freshwater, but have very different invasion histories, with zebra mussels attaining substantially faster rates of spread at virtually all spatial scales. However, in waterbodies where they co-occur, D. r. bugensis can displace D. polymorpha. To determine if the mechanisms for this displacement are associated with different survival and growth, we kept mussels in flow-through tanks for 289 days with two temperature regimes that mimicked the natural surface water (littoral zone) and hypolimnion conditions of Lake Erie. For the littoral zone regime, we used water directly from the surface of Lake Erie (range 4–25°C, average 11.9 ± 0.6°C). For the profundal zone treatment, Lake Erie surface water was chilled to about 6°C (range 5–8°C, average 6.2 ± 0.6°C) for the full duration of the experiment. For each of these temperature regimes, we used three replicate tanks with only zebra mussels present and three replicate tanks with only quagga mussels (150 ind./tank each), and three replicate tanks with both species (75 ind./tank of each species). Quagga mussels had higher survivorship and grew more than zebra mussels in all treatments. For both species, the size of the mussel entering the winter was critical for survivorship. Larger mussels had a higher survival over the winter in all treatments. For both species, there was a survivorship and growth tradeoff. In the warmer littoral zone treatment both species had higher growth, but lower survival than in the colder profundal zone treatment. Surprisingly, although quagga mussels outperformed zebra mussels, zebra mussel survivorship was better when they were faced with competition by quagga mussels than with just intraspecific competition. In addition, quagga mussels suffered size-specific mortality during the growing season only when facing interspecific competition with zebra mussels. Further experiments are needed to determine the possible mechanisms for these interspecific effects.  相似文献   

12.
There have been few investigations of the number of founding sources and amount of genetic variability that lead to a successful nonindigenous species invasion, although genetic diversity is believed to play a central role. In the present study, population genetic structure, diversity and divergence patterns were analysed for the zebra mussel Dreissena polymorpha [n=280 samples and 63 putative randomly amplified polymorphic DNA (RAPDs) gene loci] and the quagga mussel D. bugensis (n=136 and 52 loci) from 10 nonindigenous North American and six Eurasian sampling sites, representing their present‐day ranges. Results showed that exotic populations of zebra and quagga mussels had surprisingly high genetic variability, similar to those in the Eurasian populations, suggesting large numbers of founding individuals and consistent with the hypothesis of multiple colonizations. Patterns of genetic relationships indicate that the North American populations of D. polymorpha likely were founded by multiple source populations from north‐western and northcentral Europe, but not from southcentral or eastern Europe. Sampling areas within North America also were significantly divergent, having levels of gene flow and migration about twice those separating long‐established Eurasian populations. Samples of D. bugensis in Lakes Erie and Ontario were significantly different, with the former being more closely related to a native population from the Dnieper River, Ukraine. No evidence for a founder effect was discerned for either species.  相似文献   

13.
Considerable uncertainty exists in determination of the phylogeny among extant members of the Dreissenidae, especially those inhabiting the Ponto-Caspian basin, as multiple systematic revisions based on morphological characteristics have failed to resolve relationships within this group of bivalves. In this study we use DNA sequence analyses of two mitochondrial gene fragments, 16S rRNA and cytochrome c oxidase subunit I (COI), to determine phylogenetic relationships among Dreissena rostriformis, D. bugensis, D. polymorpha, D. stankovici, Congeria kusceri, and Mytilopsis leucophaeata. Dreissena stankovici was determined to represent a sister taxa to D. polymorpha and both are more closely related to other extant Dreissena species than Congeria or Mytilopsis. Sequence divergence between D. rostriformis and D. bugensis was relatively low (0.3-0.4%), suggesting that these two taxa constitute a single species. However, environmental differences suggest two races of D. rostriformis, a brackish water race (rostriformis) and a freshwater race (bugensis). Spread of bugensis-type individuals into habitats in the Caspian Sea that are occupied by rostriformis-type individuals may create novel hybridization opportunities. Species-specific molecular markers also were developed in this study since significant intraspecific variation in morphological features complicates dreissenid identification. Using two gene fragments (nuclear 28S and 16S), we identified restriction fragment length polymorphisms (RFLPs) that distinguish among D. rostriformis/bugensis, D. polymorpha, and D. stankovici and revealed the presence of a cryptic invader to the Black Sea basin, Mytilopsis leucophaeata. This is the first report of this North American native in southern Europe.  相似文献   

14.
SYNOPSIS. North America's Great Lakes have recently been invadedby two genetically and morphologically distinct species of Dreissena.The zebra mussel (Dreissena polymorpha) became established inLake St. Clair of the Laurentian Great Lakes in 1986 and spreadthroughout eastern North America. The second dreissenid, termedthe quagga mussel, has been identified as Dreissena bugensisAndrusov, 1897. The quagga occurs in the Dnieper River drainageof Ukraine and now in the lower Great Lakes of North America.In the Dnieper River, populations of D. polymorpha have beenlargely replaced by D. bugensis; anecdotal evidence indicatesthat similar trends may be occurring in the lower LaurentianGreat Lakes. Dreissena bugensis occurs as deep as 130 m in theGreat Lakes, but in Ukraine is known from only 0–28 m.Dreissena bugensis is more abundant than D. polymorpha in deeperwaters in Dneiper River reservoirs. The conclusion that NorthAmerican quagga mussels have a lower thermal maximum than zebramussels is not supported by observations made of populationsin Ukraine. In the Dnieper River drainage, quagga mussels areless tolerant of salinity than zebra mussels, yet both dreissenidshave acclimated to salinities higher than North American populations;eventual colonization into estuarine and coastal areas of NorthAmerica cannot be ignored.  相似文献   

15.
1.  Invasive zebra ( Dreissena polymorpha ) and quagga mussels ( Dreissena bugensis ) have become widespread throughout the Great Lakes basin. However, some types of Great Lakes coastal wetlands may be unsuitable for Dreissena invasion.
2.  To test this observation, artificial substrata were placed in wetlands (with emergent vegetation) and in adjacent open water (without emergent vegetation) habitats in two types of Great Lakes coastal ecosystems: drowned river mouth (DRM) and coastal fringing systems. Wetlands in DRM systems generally have deep organic sediment and limited water movement, whereas coastal fringing wetlands generally have low to moderate amounts of organic sediment and intense wind and wave action.
3.  We did not find a significant difference in Dreissena colonisation between wetlands and adjacent open water habitat in fringing systems. However, Dreissena colonisation was significantly lower in DRM wetlands than in the adjacent open water. We also found significantly lower survival in DRM wetlands than adjacent open water habitats, whereas survival did not differ significantly in coastal fringing wetlands and the adjacent open water.
4.  Our results suggest that vulnerability to Dreissena invasion varied among wetland types with DRM wetlands being less suitable than fringing wetlands. We suggest that colonisation and survival of Dreissena is lower in wetlands with deep organic sediment and less turbulent water.  相似文献   

16.
17.
1. Recent increases in phytoplankton biomass and the recurrence of cyanobacterial blooms in western Lake Erie, concomitant with a shift from a community dominated by zebra mussels (Dreissena polymorpha) to one dominated by quagga mussels (D. bugensis), led us to test for differences in ammonia‐nitrogen and phosphate‐phosphorus excretion rates of these two species of invasive molluscs. 2. We found significant differences in excretion rate both between size classes within a taxon and between taxa, with zebra mussels generally having greater nutrient excretion rates than quagga mussels. Combining measured excretion rates with measurements of mussel soft‐tissue dry weight and shell length, we developed nutrient excretion equations allowing estimation of nutrient excretion by dreissenids. 3. Comparing dreissenid ammonia and phosphate excretion with that of the crustacean zooplankton, we demonstrated that the mussels add to nitrogen and phosphorus remineralisation, shortening nitrogen and phosphorus turnover times, and, importantly, modify the nitrogen and phosphorus cycles in Lake Erie. The increased nutrient flux from dreissenids may facilitate phytoplankton growth and cyanobacterial blooms in well‐mixed and/or shallow areas of western Lake Erie.  相似文献   

18.
Enumeration of benthic (bottom dwelling) and epiphytic (attached to plants) zebra and quagga mussels (Dreissena polymorpha and D. bugensis, respectively) at Lake Erie near-shore sites in fall of 2000 revealed an unexpected prevalence of the zebra mussel on submerged plants. Even at Buffalo, New York, USA, where benthic dreissenids have been 92–100% quagga mussel since 1996, zebra mussels constituted 30–61% of epiphytes numerically. This may reflect a partitioning of settling space consistent with interspecific competition. A seasonal epiphytic refugium might allow the zebra mussel to persist even where the benthos is almost exclusively quagga mussel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The genus Dreissena includes two widespread and aggressive aquatic invaders, the zebra mussel, Dreissena polymorpha, and the quagga mussel, Dreissena bugensis. This genus evolved in the Ponto-Caspian Sea basin, characterized by dynamic instability over multiple timescales and a unique evolutionary environment that may predispose to invasiveness. The objectives of this study were to gain insights into the demographic history of Dreissena species in their endemic range, to reconstruct intraspecific phylogeographic relationships among populations, and to clarify systematics of the genus, using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. We found four deeply diverged clades within this genus, with a basal split that approximately coincided with the Cretaceous-Tertiary boundary. Divergence events within the four base clades were much more recent, corresponding to geographically disjunct sets of populations, which might represent species complexes. Across all taxa, populations of Dreissena shared a common pattern of genetic signatures indicating historical population bottlenecks and expansions. Haplotype diversity was relatively low in Ponto-Caspian drainages relative to more stable tectonic lakes in Greece, Macedonia, and Turkey. The phylogeographic and demographic patterns in the endemic range of Dreissena might have resulted from vicariance events, habitat instability, and the high fecundity and passive dispersal of these organisms.  相似文献   

20.
The high mutation rate at microsatellite loci can supply important demographic information on founder events and range expansion in an invasive species such as the zebra mussel Dreissena polymorpha, following its initial introduction. In order to facilitate studies into the colonization patterns of this species in new habitats in Europe and North America, five trinucleotide microsatellite loci were isolated from a partial DNA library. Allelic diversity at all described loci was high, ranging from 20 to 35 alleles per locus. Homologous loci were not amplified in a second related invasive species, Dreisenna bugensis, using the primers developed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号