首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other, n=42), early-onset breast cancer (early-onset, age or=75% versus below the median, age-adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.  相似文献   

2.
3.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electrophoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd 2 h at 25℃ and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips of Vicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd to plants, and that the combined pollution with imidacloprid can enhance the genotoxicity of Cd.  相似文献   

4.
Behcet's disease (BD) was originally described by Turkish dermatologist, Hulusi Behcet in 1937. BD is an inflammatory disorder of unknown cause, characterized by recurrent oral aphthous ulcers, genital ulcers, uveitis, and skin lesions. All these common manifestations are self-limiting except for ocular attacks. The aims of this study were to assess whether BD patients have more genotoxicity than healthy controls and whether colchicine (COL) treated BD patients are different from those not using COL in terms of genotoxicity. A few dozens of methods have been developed and used for the assessment of genotoxicity. The most popular method is based on single cell gel electrophoresis (COMET assay) in alkaline condition. After electrophoresis, captured images are subjected to digital image analysis to find the values for percent tail DNA from comet assay parameters consistent with genotoxicity. COMET assay was performed in isolated lymphocytes from 42 COL treated Behcet's disease patients, 9 BD patients not using COL, and 36 healthy controls. In the COL-BD patients and non-COL-BD patients, the mean age (range 14-56 years) and mean disease duration (range 0.5-24 years) did not differ between the two groups. We found statistical differences in percent tail DNA between BD and the healthy controls (13.38+/-9.58 versus 2.77+/-1.45, P<0.0001). No difference in percent tail DNA was observed between users and non-users of COL, whereas it was more different in inactive BD patients than active ones (19.75+/-10.49 versus 11.83+/-8.79, P<0.05, respectively). Genotoxicity, as assessed by COMET assay, is increased in BD patients. These results suggest that genotoxicity is associated with BD itself rather than COL use.  相似文献   

5.
Smoking increases indices of free radical-mediated damage of DNA which are potential underlying processes in the pathogenesis of many diseases. In this study, we evaluated whether 8 weeks of green vegetable drink (Angelica keiskei based juice) supplementation to smokers can be protective against lymphocytic DNA damage. Twenty smokers were given 240 ml of commercially available green vegetable drink every day for 8 weeks. The DNA damage was determined using single cell gel electrophoresis (COMET assay) and the damage was quantified by measuring tail length (TL), tail moment (TM), and percent DNA in tail. Eight weeks of green vegetable drink consumption resulted in a significant in lymphocytes DNA damage in all three measurements; TL, TM and % DNA in tail. These results support the hypothesis that green vegetable drink exerts a cancer-protective effect via a decrease in oxidative damage to DNA in humans.  相似文献   

6.
Increased production of reactive oxygen species under diabetic condition underlines the higher oxidatively damaged DNA in different tissues. However, it is practically difficult to assess the oxidatively damaged DNA in different internal organs. Therefore, the present study was aimed to evaluate the extent of oxidative stress-induced DNA damage in different organs with the progression of diabetes. Diabetic and control Sprague Dawley rats were sacrificed in time-dependent manner and the lung, liver, heart, aorta, kidney, pancreas and peripheral blood lymphocytes (PBL) were analyzed for both alkaline and modified comet assay with endonuclease-III (Endo III) and formamidopyrimidine-DNA glycosylase (FPG) (hereafter called modified comet assay) for the detection of oxidative DNA damage. The statistically significant increase in olive tail moment (OTM) was found in all the tested tissues. The extent of DNA damage was increased with the progression of diabetes as revealed by the parameter of OTM in alkaline and modified comet assay. Further, the positive correlations were observed between OTM of the lung, liver, heart, aorta, kidney and pancreas with PBL of diabetic rat in the alkaline and modified comet assay. Moreover, significant increase in the 8-oxodG positive nuclei in the lung, liver, heart, aorta, kidney and pancreas was observed in 4th and 8th week diabetic rat as compared to control. Results of the present study clearly indicated the suitability of alkaline and modified comet assay for the detection of multi-organ oxidative DNA damage in streptozotocin (STZ)-induced diabetic rat and showed that damaged DNA of PBL can be used as a suitable biomarker to assess the internal organs response to DNA damage in diabetes.  相似文献   

7.
The present study was undertaken to contribute to the characterization of the degree of variability in baseline damage in white blood cells from control population, and to investigate how this variability is associated with external and internal factors. Altogether 170 healthy volunteers, randomly selected from the general population of the Republic of Croatia, participated in the study. Two sensitive tests: the alkaline comet assay and the chromosome aberration test were applied to study the background levels of DNA damage in their white blood cells. The results point to inter-individual differences, indicating different genome sensitivity. As revealed by both assays, the background levels of DNA damage were mostly influenced by smoking habit as well as medical exposure (especially to diagnostic X-rays). Sex and age of subjects did not significantly influence the values of DNA damage recorded in the white blood cells. Although higher levels of DNA damage were recorded in blood samples collected during winter and autumn, they were mostly influenced by medicinal exposure and smoking habit. Statistical evaluation of the data confirmed that a positive correlation exists between DNA migration and the number of long-tailed nuclei found with the comet assay and the total number of chromosome aberrations. The data obtained can serve as control values in forthcoming biomonitoring studies.  相似文献   

8.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electrophoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg· kg?1 dry soil) or Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg · kg?1 dry soil) and imidacloprid (0.5 mg · kg?1 dry soil). Roots ofVicia faba were exposed to the contaminated soil for 2 h at 25°C and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips ofVicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd to plants, and that the combined pollution with imidacloprid can enhance the genotoxicity of Cd.  相似文献   

9.
Cypermethrin is the most widely used Type II pyrethroid pesticide because of its high effectiveness against target species and its low mammalian toxicity reported so far. It is a fast-acting neurotoxin and is known to cause free radical-mediated tissue damage. The present study investigates the genotoxic effects of cypermethrin in multiple organs (brain, kidney, liver, spleen) and tissues (bone marrow, lymphocytes) of the mouse, using the alkaline comet assay. Male Swiss albino mice were given 12.5, 25, 50, 100, 200 mg/kg BW of cypermethrin intraperitoneally, daily for 5 consecutive days. A statistically significant (p<0.05) dose-dependent increase in DNA damage was observed in all the organs assessed, as evident from the comet-assay parameters, viz., Olive tail moment (OTM; arbitrary unit), tail DNA (%) and tail length (microm). Brain showed maximum DNA damage followed by spleen>kidney>bone marrow>liver>lymphocytes, as evident by the OTM. Our data demonstrate that cypermethrin induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney, apart from that in the hematopoietic system.  相似文献   

10.
以芒果‘台农一号’盆栽苗离体叶片为试材,采用单细胞凝胶电泳法研究增强UV-B辐射条件下芒果叶片细胞染色体的损伤。结果显示:幼叶在处理4h、老叶和成年叶在处理6h开始出现染色体彗星拖尾现象,其OTM值开始急剧上升,此后,各叶龄叶片的彗星拖尾密度和长度以及OTM值持续上升;自然光下的叶片则无明显彗星拖尾,其OTM值低于UV-B辐射处理的并无显著变化。在UV-B辐射下,幼叶彗星拖尾最明显,OTM值最高,成年叶彗星拖尾和OTM值分别比老叶的更明显和更高。  相似文献   

11.
The Comet assay (single cell gel electrophoresis assay) measures DNA strand breaks in individual cells. In the assay cells are embedded in agarose, lysed, and electrophoresed under low voltage, allowing migration of damaged DNA. The DNA is stained and subsequently viewed with an epifluorescent microscope. If DNA damage has occurred the electrophoresed DNA fragments appear as a diffuse tail behind the nucleus known as a "comet". Many computer-aided analysis systems are currently in use to quantify the amount of DNA damage that is represented by a comet image. Here, we present a novel method of analysis known as "tail profile". This method of analysis provides several advantages over currently employed methods, which rely primarily on the "tail moment" method of analysis. We compared the amount of DNA damage reported from both the tail profile and tail moment methods of analysis and observed a 26% (P<0.0001) increase in damage detected by tail profile across the 10-25 microm range of tail length, where the majority of the relevant comet data is concentrated. We further report that this increase in sensitivity is not only limited to assessing DNA damage, but also to gathering data from DNA repair assays. Furthermore, we demonstrate increased functionality and extended data analysis capabilities with the use of a compressed collection of images called a "comet chip" and through a visual representation of data called a "profile plot". Use of the custom macros enabled us to detect an unexpected characteristic of the electrophoretic profile, giving us novel insight into the nature of comet analysis. In addition to the increased analytical sensitivity proffered by this system, the tail profile macros are upgradeable and platform independent.  相似文献   

12.
Guo Z  Zhao J  Xue TM  Ma JX  Wang CJ  Huang SS 《生理学报》2011,63(2):164-170
本文研究醋酸棉酚(gossypol acetic acid,GAA)对人粘液表皮样癌细胞MEC-1体外增殖的影响,并初步探讨其抑制肿瘤细胞增殖的机制.体外培养人粘液表皮样癌细胞系MEC-1细胞,用MTT法检测GAA对MEC-1细胞增殖的影响;用中性彗星实验检测GAA对MEC-1细胞的DNA双链断裂;用免疫荧光染色法检测...  相似文献   

13.
The single-cell gel electrophoresis or Comet assay measures qualitative and quantitative DNA damage in single cells. Its simplicity and non-invasive nature has made it widely accepted for the monitoring of human genotoxicity, employing peripheral blood lymphocytes. Factors, such as gender, age, and dietary and smoking habits are known to affect the Comet assay responses in lymphocytes. However, there is no information regarding the influence of the menstrual cycle on the results of the assay in lymphocytes of females. A study was therefore undertaken among 18 healthy Indian female volunteers to assess the effect of the menstrual cycle on Comet assay responses. During a complete menstrual cycle, only minor changes were observed in the basal levels of DNA damage in the lymphocytes as evident by Comet parameters, such as tail length (microm), tail DNA (%) and Olive tail moment (arbitrary units). To assess the effect of the estrogen 17beta-estradiol (at physiological concentrations of 0.5, 1.0 and 2.0 nM) on the Comet assay responses, an in vitro study was conducted in the human lymphocyte cell line JM-1 and the breast cancer cell line MCF-7. As was evident from the Comet parameters, a significant (p < 0.01) concentration-dependent increase in the level of DNA damage was observed in the MCF-7 cells while no significant change was found in the JM-1 cells. The results indicate that the menstrual cycle does not influence the Comet assay responses in lymphocytes; hence, these can serve as a model for monitoring genotoxicity in females.  相似文献   

14.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   

15.
The purpose of this study was to find a possible explanation of the inconsistency of data regarding the genotoxicity of microcystin-LR (MC-LR). We compared the results of the comet assay with the results of the analysis of chromosome aberrations and apoptosis. In order to investigate the influence of MC-LR on DNA damage in human lymphocytes, cells were treated with MC-LR at different concentrations (1, 10 and 25 microg/ml) for 6, 12, 18 and 24 h. Analyses of Olive Tail Moment (OTM) as an indicator of DNA damage showed that MC-LR treatment induced DNA damage in a time-dependent manner, reaching its maximum after 18 h. The lowest values of OTM were observed after 24 h. MC-LR had no effect on the frequency of chromosome aberrations in lymphocytes. Since some data available in the literature indicate that apoptosis may lead to overestimated or false positive results regarding the genotoxicity of mutagens in the comet assay, we measured the frequency of late apoptotic cells by use of the comet assay and the frequency of early apoptotic cells with the TUNEL method. The comet assay results revealed that the highest level of apoptosis was observed after 24 h and the lowest after 18 h. The comparison of the frequency of apoptotic cells determined by the comet assay with DNA damage (OTM) examined by the comet assay revealed a statistically significant, negative correlation. The TUNEL results showed that the frequency of apoptotic cells progressively increased in a dose- and time-dependent manner. The comparison of the frequency of apoptotic cells determined by TUNEL method with DNA damage (OTM) examined by the comet assay showed a significant positive correlation for lymphocytes treated with MC-LR for 6, 12 and 18 h. Therefore, our findings indicate that microcystin-LR-induced DNA damage observed in the comet assay may be related to the early stages of apoptosis due to cytotoxicity but not genotoxicity. In addition, we examined the DNA repair kinetics in lymphocytes following treatment with microcystin-LR and ionizing radiation. Our results indicate that MC-LR has an inhibiting effect on the repair of radiation-induced damage.  相似文献   

16.
The single-cell gel electrophoresis or Comet assay measures qualitative and quantitative DNA damage in single cells. Its simplicity and non-invasive nature has made it widely accepted for the monitoring of human genotoxicity, employing peripheral blood lymphocytes. Factors, such as gender, age, and dietary and smoking habits are known to affect the Comet assay responses in lymphocytes. However, there is no information regarding the influence of the menstrual cycle on the results of the assay in lymphocytes of females.A study was therefore undertaken among 18 healthy Indian female volunteers to assess the effect of the menstrual cycle on Comet assay responses. During a complete menstrual cycle, only minor changes were observed in the basal levels of DNA damage in the lymphocytes as evident by Comet parameters, such as tail length (μm), tail DNA (%) and Olive tail moment (arbitrary units).To assess the effect of the estrogen 17β-estradiol (at physiological concentrations of 0.5, 1.0 and 2.0 nM) on the Comet assay responses, an in vitro study was conducted in the human lymphocyte cell line JM-1 and the breast cancer cell line MCF-7. As was evident from the Comet parameters, a significant (p < 0.01) concentration-dependent increase in the level of DNA damage was observed in the MCF-7 cells while no significant change was found in the JM-1 cells.The results indicate that the menstrual cycle does not influence the Comet assay responses in lymphocytes; hence, these can serve as a model for monitoring genotoxicity in females.  相似文献   

17.
Validation and implementation of an internal standard in comet assay analysis   总被引:15,自引:0,他引:15  
The comet assay is widely used to detect DNA damage in single cells. However, only moderate attention has been paid to the experimental variability of this assay, especially during electrophoresis. To take into account this variation and to be able to compare measurements from different electrophoretic runs, as would be necessary when large numbers of samples need to be analysed, it is important to integrate an internal standard into the assay. This study presents a first step in the validation and implementation of an internal standard in the alkaline comet assay. Untreated and ethyl methanesulfonate treated cells (K562 human erythroleukemia cell line) were used as negative and positive internal standards, respectively, in each electrophoresis run. Three steps were followed: (1) assessment of the different levels of variability which may influence the damage levels of the internal standards, (2) evaluation of the variability across separate electrophoresis runs on the quantification of DNA damage in the internal standards by three experimenters involved in different studies and (3) proposal of an adequate calculation system to integrate the internal standards into test sample data. The application of the two proposed models to samples from a human biomonitoring study is presented. The model which calibrates the measurements against the negative internal standard is the most useful since this negative standard was the most stable across experiments and among the three experimenters. The percentage of DNA in the tail is the most appropriate parameter to analyse induced DNA damage, because its interelectrophoresis and interexperimenter variation is less pronounced than that of tail length.  相似文献   

18.
Recently, we developed an improved comet assay protocol for evaluating single-strand break repair capacity (SSB-RC) in unstimulated cryopreserved human peripheral blood mononuclear cells (PBMCs). This methodology facilitates control of interexperimental variability [A.R. Trzeciak, J. Barnes, M.K. Evans, A modified alkaline comet assay for measuring DNA repair capacity in human populations. Radiat. Res. 169 (2008) 110-121]. The fast component of SSB repair (F-SSB-RC) was assessed using a novel parameter, the initial rate of DNA repair, and the widely used half-time of DNA repair. The slow component of SSB repair (S-SSB-RC) was estimated using the residual DNA damage after 60 min. We have examined repair of gamma-radiation-induced DNA damage in PBMCs from four age-matched groups of male and female whites and African-Americans between ages 30 and 64. There is an increase in F-SSB-RC with age in white females (P<0.01) and nonsignificant decrease in F-SSB-RC in African-American females (P=0.061). F-SSB-RC is lower in white females than in white males (P<0.01). There is a decrease in F-SSB-RC with age in African-American females as compared to white females (P<0.002) and African-American males (nonsignificant, P=0.059). Age, sex, and race had a similar effect on intercellular variability of DNA damage in gamma-irradiated and repairing PBMCs. Our findings suggest that age, sex, and race influence SSB-RC as measured by the alkaline comet assay. SSB-RC may be a useful clinical biomarker.  相似文献   

19.
Trzeciak, A. R., Barnes, J. and Evans, M. K. A Modified Alkaline Comet Assay for Measuring DNA Repair Capacity in Human Populations. Radiat. Res. 169, 110-121 (2008). Use of the alkaline comet assay to assess DNA repair capacity in human populations has been limited by several factors, including lack of methodology for use of unstimulated cryopreserved peripheral blood mononuclear cells (PBMCs), insufficient control of interexperimental variability, and limited analysis of DNA repair kinetics. We show that unstimulated cryopreserved PBMCs can be used in DNA repair studies performed using the comet assay. We have applied data standardization for the analysis of DNA repair capacity using negative and positive internal standards as controls for interexperimental variability. Our standardization procedure also uses negative controls, which provides a way to minimize the interference of interindividual variation in baseline DNA damage levels on DNA repair capacity measurements in populations. DNA repair capacity was assessed in a small human cohort using the parameters described in the literature including initial DNA damage, half-time of DNA repair, and residual DNA damage after 30 and 60 min. We have also introduced new DNA repair capacity parameter, initial rate of DNA repair. There was no difference in DNA repair capacity between fresh and cryopreserved PBMCs when measured by the Olive tail moment and tail DNA. The use of DNA repair capacity parameters in assessment of fast and slow single-strand break repair components is discussed.  相似文献   

20.
High inter- and intra-individual variability was reported in the level of DNA damage, both spontaneous and induced, when peripheral blood mononuclear leukocytes were used to perform the Comet assay. In order to find out the underlying causes for such variability, different subsets of T lymphocytes were isolated by immunomagnetic cell sorting. The level of DNA damage was evaluated with the alkaline version of the Comet assay by using three different parameters: tail moment, tail length and amount of DNA in the tail (%). Helper T cells (CD4+), cytotoxic T cells (CD8+), their negative fraction and the mixed cell population were evaluated both in untreated cells and after 10 and 20 microM H(2)O(2) treatments. Differences between cell subsets were only observed after H(2)O(2) treatment. The results indicate that, although CD4+ is the fraction with the highest induced level of genetic damage, this value is not high enough to explain the large inter- and intra-individual variability found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号