首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence comparison of orthologous regions enables estimation of the divergence between genomes, analysis of their evolution and detection of particular features of the genomes, such as sequence rearrangements and transposable elements. Despite the economic importance of Coffea species, little genomic information is currently available. Coffea is a relatively young genus that includes more than one hundred diploid species and a single tetraploid species. Three Coffea orthologous regions of 470-900 kb were analyzed and compared: both subgenomes of allotetraploid Coffea arabica (contributed by the diploid species Coffea eugenioides and Coffea canephora) and the genome of diploid C. canephora. Sequence divergence was calculated on global alignments or on coding and non-coding sequences separately. A search for transposable elements detected 43 retrotransposons and 198 transposons in the sequences analyzed. Comparative insertion analysis made it possible to locate 165 TE insertions in the phylogenetic tree of the three genomes/subgenomes. In the tetraploid C. arabica, a homoeologous non-reciprocal transposition (HNRT) was detected and characterized: a 50 kb region of the C. eugenioides derived subgenome replaced the C. canephora derived counterpart. Comparative sequence analysis on three Coffea genomes/subgenomes revealed almost perfect gene synteny, low sequence divergence and a high number of shared transposable elements. Compared to the results of similar analysis in other genera (Aegilops/Triticum and Oryza), Coffea genomes/subgenomes appeared to be dramatically less diverged, which is consistent with the relatively recent radiation of the Coffea genus. Based on nucleotide substitution frequency, the HNRT was dated at 10,000-50,000 years BP, which is also the most recent estimation of the origin of C. arabica.  相似文献   

2.
* Coffea arabica (Arabica) and Coffea canephora (Robusta) are the two main cultivated species used for coffee bean production. Arabica genotypes generally produce a higher coffee quality than Robusta genotypes. Understanding the genetic basis for sucrose accumulation during coffee grain maturation is an important goal because sucrose is an important coffee flavor precursor. * Nine new Coffea genes encoding sucrose metabolism enzymes have been identified: sucrose phosphate synthase (CcSPS1, CcSPS2), sucrose phosphate phosphatase (CcSP1), cytoplasmic (CaInv3) and cell wall (CcInv4) invertases and four invertase inhibitors (CcInvI1, 2, 3, 4). * Activities and mRNA abundance of the sucrose metabolism enzymes were compared at different developmental stages in Arabica and Robusta grains, characterized by different sucrose contents in mature grain. * It is concluded that Robusta accumulates less sucrose than Arabica for two reasons: Robusta has higher sucrose synthase and acid invertase activities early in grain development - the expression of CcSS1 and CcInv2 appears to be crucial at this stage and Robusta has a lower SPS activity and low CcSPS1 expression at the final stages of grain development and hence has less capacity for sucrose re-synthesis. Regulation of vacuolar invertase CcInv2 activity by invertase inhibitors CcInvI2 and/or CcInvI3 during Arabica grain development is considered.  相似文献   

3.
Fluorescence in situ hybridization (FISH) was used to study the presence of alien chromatin in interspecific hybrids and one introgressed line (S.288) derived from crosses between the cultivated species Coffea arabica and the diploid relatives C. canephora and C. liberica. In situ hybridization using genomic DNA from C. canephora and C. arabica as probes showed elevated cross hybridization along the hybrid genome, confirming the weak differentiation between parental genomes. According to our genomic in situ hybridization (GISH) data, the observed genomic resemblance between the modern C. canephora genome (C) and the C. canephora-derived subgenome of C. arabica (Ca) appears rather considerable. Poor discrimination between C and Ca chromosomes supports the idea of low structural modifications of both genomes since the C. arabica speciation, at least in the frequency and distribution of repetitive sequences. GISH was also used to identify alien chromatin segments on chromosome spreads of a C. liberica-introgressed line of C. arabica. Further, use of GISH together with BAC-FISH analysis gave us additional valuable information about the physical localization of the C. liberica fragments carrying the SH3 factor involved in resistance to the coffee leaf rust. Overall, our results illustrate that FISH analysis is a complementary tool for molecular cytogenetic studies in coffee, providing rapid localization of either specific chromosomes or alien chromatin in introgressed genotypes derived from diploid species displaying substantial genomic differentiation from C. arabica.  相似文献   

4.
The importance of introgressive hybridization in plant evolution has long been recognized. Nevertheless, information on gene flow between allopolyploids and their diploid relatives is very limited, even though gene flow could play a major role in polyploid establishment and evolution. Here, we investigated the processes governing hybrid formation and introgression between the allotetraploid Coffea arabica and one of its ancestral diploid progenitors, C. canephora, in a sympatric zone of New Caledonia. The occurrence of a large assortment of hybridization events between the 2 coffee species is clearly established. First-generation hybrids (F1) and post-F1 hybrids were characterized. The involvement of unreduced gametes of C. canephora is suggested, because tetraploid F1 hybrid plants were detected. Moreover, although bidirectional mating was observed, only unidirectional gene flow from C. canephora to C. arabica was noted in post-F1 hybrids. Most of the collected post-F1 hybrid plants exhibited a high level of introgression, and the frequency of introgression observed among the different analyzed loci was homogeneous, suggesting no significant counterselection against introgressions from C. canephora. Overall, the New Caledonian central mountains appear to be a highly favourable environment for introgressive hybridization and a genetic diversity center for C. arabica.  相似文献   

5.
6.
Two independent procedures for the quantitative determination of the polysaccharide content of Arabica Caturra (Coffea arabica var. Caturra) and Robusta ROM (Coffea canephora var. ROM) green coffee beans showed that they both contained identical amounts of polysaccharide. Cell wall material (CWM) was prepared from the beans and partial solubilisation of component polysaccharides was effected by sequential extraction with water, 1 M KOH, 0.3% NaClO2, 4 M KOH and 8 M KOH. The monosaccharide compositions of the CWMs were similar, although Arabica beans contained slightly more mannose than Robusta. In the latter, more arabinogalactan was solubilised during preparation of the CWM and the water-soluble fraction of the CWM contained higher amounts of galactomannan than in Arabica. Linkage analysis indicated that the galactomannans possessed unbranched to branched mannose ratios between 14:1 and 30:1 which is higher than previously reported. No major difference in the structural features of the galactomannans between species was found. The arabinogalactans were heterogeneous both with regard to the degree of branching and the degree of polymerisation of their arabinan side-chains. Compared to Arabica, Robusta appeared to contain greater amounts of arabinogalactans with longer side chains. It is concluded that there was no detectable difference between the Arabica and Robusta varieties of this study in their absolute polysaccharide content or in the gross structural features of their galactomannans. Differences were apparent both in the structural features and ease of solubility of the arabinogalactans but a more detailed study of several varieties of Arabica and Robusta will be required to determine whether these differences occur consistently between species.  相似文献   

7.
Nuclear genome size has been measured in various plants, seeing that knowledge of the DNA content is useful for taxonomic and evolutive studies, plant breeding programs and genome sequencing projects. Besides the nuclear DNA content, tools and protocols to quantify the chromosomal DNA content have been also applied, expanding the data about genomic structure. This study was conducted in order to calculate the Coffea canephora and Coffea arabica chromosomal DNA content, associating cytogenetic methodologies with flow cytometry (FCM) and image cytometry (ICM) tools. FCM analysis showed that the mean nuclear DNA content of C. canephora and C. arabica is 2C = 1.41 and 2.62 pg, respectively. The cytogenetic methodology provided prometaphase and metaphase cells exhibiting adequate chromosomes for the ICM measurements and karyogram assembly. Based on cytogenetic, FCM and ICM results; it was possible to calculate the chromosomal DNA content of the two species. The 1C chromosomal DNA content of C. canephora ranged from 0.09 (chromosome 1) to 0.05 pg (chromosome 11) and C. arabica from 0.09 (chromosome 1) to 0.03 pg (chromosome 22). The methodology presented in this study was suitable for DNA content measuring of each chromosome of C. canephora and C. arabica. The cytogenetic characterization and chromosomal DNA content analyses evidenced that C. arabica is a true allotetraploid originated from a cross between Coffea diploid species. Besides, the same analyses also reinforce that C. canephora is a possible progenitor of C. arabica.  相似文献   

8.
Coffea arabica (the Arabica coffee) is an allotetraploid species originating from a recent hybridization between two diploid species: C. canephora and C. eugenioides. Transposable elements can drive structural and functional variation during the process of hybridization and allopolyploid formation in plants. To learn more about the evolution of the C. arabica genome, we characterized and studied a new Copia LTR-Retrotransposon (LTR-RT) family in diploid and allotetraploid Coffea genomes called Divo. It is a complete and relatively compact LTR-RT element (~5 kb), carrying typical Gag and Pol Copia type domains. Reverse Trancriptase (RT) domain-based phylogeny demonstrated that Divo is a new and well-supported family in the Bianca lineage, but strictly restricted to dicotyledonous species. In C. canephora, Divo is expressed and showed a genomic distribution along gene rich and gene poor regions. The copy number, the molecular estimation of insertion time and the analysis at orthologous locations of insertions in diploid and allotetraploid coffee genomes suggest that Divo underwent a different and recent transposition activity in C. arabica and C. canephora when compared to C. eugenioides. The analysis of this novel LTR-RT family represents an important step toward uncovering the genome structure and evolution of C. arabica allotetraploid genome.  相似文献   

9.
In order to define better the endosperm protein content of commercial coffee species Coffea arabica (Arabica) and C. canephora (Robusta), the principal storage protein of coffee grains has been analysed by 2-dimensional electrophoresis (2DE) and amino acid microsequencing. The most abundant polypeptide spots observed on mature coffee grain 2DE profiles were found to be subunits of the same protein, which exists as multiple isoforms with varying pIs. Strong sequence similaritywas found to the 11S family of plant storage proteins. The structure is typical of the 11S type, which occurs as a precursor of 55 kDa, and is observed under denaturing and reducing conditions on 2DE profiles in the form of cleavage products at approximately 20 kDa (β arms) and 32 kDa (α arms). Differences between Arabica and Robusta 2DE profiles indicate a secondary 11S protein family in some varieties of the latter. The existence of multiple pI forms may indicate that a multigene family encodes for these proteins. We estimate that the protein accounts for approximately 45 % of total grain protein. A cloned full-length cDNA of 1 706 bp coding for one of the isoforms is described and discussed in relation to other coffee storage protein sequences.  相似文献   

10.
Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single‐nucleotide polymorphism (SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNPs (~82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high‐density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora‐derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high‐density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding.  相似文献   

11.
Molecular cytogenetic analysis has indicated that Coffea arabica is an amphidiploid formed from the hybridization between two closely related diploid progenitor species, C. canephora and C. eugenioides. Our aim was to determine the mode of inheritance in C. arabica and in a tetraploid interspecific hybrid (called arabusta) between C. arabica and C. canephora as revealed by segregation analyses of restriction fragment length polymorphism (RFLP) loci markers. The observed RFLP allele segregations in an F(2) progeny of C. arabica conform to disomic inheritance as expected, with regular bivalent pairing of homologous chromosomes in the F1 hybrid. In contrast, RFLP loci followed tetrasomic inheritance in the arabusta interspecific hybrid, although bivalents have been reported to predominate greatly at meiosis in its hybrid. These results suggest that homologous chromosomes do not pair in C. arabica, not as a consequence of structural differentiation, but because of the functioning of pairing regulating factors. Moreover, the arabusta hybrid seems to offer the possibility of gene exchange between the homologous genomes.  相似文献   

12.
13.
Genetic diversity of Coffea arabica cultivars was estimated using amplified fragment length polymorphism (AFLP) markers. Sixty one Coffea accessions composed of six arabica cultivars, including Typica, Bourbon, Catimor, Catuai, Caturra and Mokka Hybrid, plus two diploid Coffea species, were analyzed with six EcoRI- MseI primer combinations. A total of 274 informative AFLP markers were generated and scored as binary data. These data were analyzed using cluster methods in the software package NTSYSpc. The differences among cultivars at the DNA level were small, with an average genetic similarity of 0.933. Most accessions within a cultivar formed a cluster, although deviant samples occurred in five of the six cultivars examined due to residual heterozygosity from ancestral materials. Among the six cultivars fingerprinted, the highest level of genetic diversity was found within the cultivar Catimor, with an average genetic similarity of 0.880. The lowest level was found within Caturra accessions, with an average genetic similarity of 0.993. Diversity between C. arabica and two other Coffea species, Coffea canephora and Coffea liberica, was also estimated with average genetic similarities of 0.540 and 0.413, respectively, suggesting that C. canephora is more closely related to C. arabica than is C. liberica. The genetic variation among arabica cultivars was similar to the variation within cultivars, and no cultivar-specific DNA marker was detected. Although arabica cultivars appear to have a narrow genetic base, our results show that sufficient polymorphism can be found among some arabica cultivars with a genetic similarity as low as 0.767 for genetic/QTL mapping and breeding. The assessment of genetic diversity among arabica cultivars provided the necessary information to estimate the potential for using marker-assisted breeding for coffee improvement.  相似文献   

14.
Self-sterile Coffea canephora and self-fertile C. arabica are important cash crops in many tropical countries. We examined the relative importance of insect, wind, and spontaneous self-pollination and the degree of self-fertility of these two coffee species in 24 agroforestry coffee fields in Indonesia. In both species, open pollination and cross pollination by hand led to the highest fruit set. Wind pollination (including self-pollination) led to 16% lower fruit set than open pollination in C. canephora and to 12.3% lower fruit set in C. arabica. Self-pollinated flowers and unmanipulated controls achieved an extremely low fruit set of 10% or less in the self-sterile species, and of 60% and 48%, respectively in the self-fertile species. These results constitute experimental evidence that cross pollination by bees causes a significant increase in fruit set of not only the self-sterile, but also the self-fertile coffee species. The practical implication is that coffee yield may be improved by managing fields for increased flower visitation by bees.  相似文献   

15.
Oxidative metabolism in coffee cherries during maturation appears to be regulated by the timely expression of redox enzymes such as catalase (CAT), peroxidase (POD), and polyphenoloxidase (PPO). Among these enzymes, CAT is suspected to contribute significantly in setting the redox status of the healthy cherry and the processed bean. The initial redox status of the green bean might further control the nature and dynamics of reactions induced by roasting and eventually quality aspects of the end product. In this respect, Arabica (Coffea arabica) and Robusta (Coffea canephora) typically differ by their cup coffee flavor profiles. We developed an assay that allowed us to screen numerous green coffee samples for effective CAT activities. The proposed assay, which monitors CAT activities by online oxygen sensing in green coffee crude suspensions incubated with H2O2, seeks to integrate potential effects of endogenous inhibitors and activators. After optimization and validation of the assay, 23 Arabicas, 23 Robustas, and 8 Arabustas were analyzed. Nearly all Arabicas (22 of 23) harbored high CAT activity levels, whereas all Robustas harbored low ones. Arabustas performed like Arabicas of the lower CAT activity range. The traditional spectrophotometric assay did not reveal these specificities. Because of its simplicity, our assay might be valuable for assessing effective CAT activities in various plant tissues.  相似文献   

16.
Two species of the genus Coffea, Coffea arabica (Colombia) and Coffea canephora (Indiano Robusta) were analysed by two-dimensional (2-D) maps in order to obtain fingerprints of the expressed polypeptide chains and to determine which ones would characterize the two species. Green beans were milled under liquid nitrogen. A dry powder was produced by three different extraction protocols aimed at eliminating interfering substances (polyphenols). A reduced powder was produced by two successive extractions performed in acetone. Trichloroacetic acid (TCA; 10% w/v) and beta-mercaptoethanol (0.07% v/v) in acetone were used for the first extraction (a) and 10% w/v TCA in acetone was used for the second extraction (b). Proteins were then solubilized in a solution (40 microL per 1 mg powder) containing 7 M urea, 2 M thiourea, 3% w/v 3-(3-cholamidopropyldimethyl-amino)-1-propanesulfate, 1% v/v carrier ampholytes, 40 mM Tris, 5 mM tributylphosphine and 10 mM acrylamide as alkylating agent. Following incubation at room temperature for 1 hour and centrifugation (7000 rpm for 20 minutes), the supernatant was used for 2-D electrophoresis. The proteins were revealed by Sypro Ruby staining. Master maps of the five replicas of each species were compared by PDQuest analysis. The results of this differential proteome analysis were: sixteen proteins were expressed solely in C. canephora (var. Indiano Robusta) and five proteins were only found in C. arabica (var. Colombia). Another eight proteins were up-regulated in C. canephora (var. Indiano Robusta) in comparison to C. arabica (var. Colombia) and one was down-regulated in the same comparison. A number of these polypeptide chains were further characterized by mass spectrometry in the matrix-assisted laser desorption/ionisation-time of flight mode. Additionally, considering the low number of protein sequences of Coffea present in the databases we also investigated some spots with a more powerful tool, reversed phase-high-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry, thus obtaining an internal peptide sequence. The general properties of the identified proteins are presented and discussed.  相似文献   

17.
 The most important commercial coffee species, Coffea arabica, which is cultivated in about 70% of the plantations world-wide, is the only tetraploid (2n=4x=44) species known in the genus. Genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) were used to study the genome organization and evolution of this species. Labelled total genomic DNA from diploid species (C. eugenioides, C. congensis, C. canephora, C. liberica) closely related to C. arabica was separately used as a probe in combination with or without blocking DNA to the chromosome spreads of C. arabica. GISH discriminated between chromosomes of C. arabica only in the presence of an excess of unlabelled block DNA from the species not used as a probe. Among the range of different species combinations used, DNA from C. eugenioides strongly and preferentially labelled 22 chromosomes of the tetraploid C. arabica, while the remaining 22 chromosomes were labelled with C. congensis DNA. The similarity of observations between C. arabica and the two diploid species using two ribosomal genes with FISH with respect to metaphase chromosomes provided additional support to the GISH results. These results confirm the allopolyploid nature of C. arabica and show that C. congensis and C. eugenioides are the diploid progenitors of C. arabica. Received: 2 February 1998 / Accepted: 12 May 1998  相似文献   

18.
Coffee is one of the main agrifood commodities traded worldwide. In 2009, coffee accounted for 6.1% of the value of Brazilian agricultural production, generating a revenue of US$6 billion. Despite the importance of coffee production in Brazil, it is supported by a narrow genetic base, with few accessions. Molecular differentiation and diversity of a coffee breeding program were assessed with gSSR and EST-SSR markers. The study comprised 24 coffee accessions according to their genetic origin: arabica accessions (six traditional genotypes of C. arabica), resistant arabica (six leaf rust-resistant C. arabica genotypes with introgression of Híbrido de Timor), robusta (five C. canephora genotypes), Híbrido de Timor (three C. arabica x C. canephora), triploids (three C. arabica x C. racemosa), and racemosa (one C. racemosa). Allele and polymorphism analysis, AMOVA, the Student t-test, Jaccard's dissimilarity coefficient, cluster analysis, correlation of genetic distances, and discriminant analysis, were performed. EST-SSR markers gave 25 exclusive alleles per genetic group, while gSSR showed 47, which will be useful for differentiating accessions and for fingerprinting varieties. The gSSR markers detected a higher percentage of polymorphism among (35% higher on average) and within (42.9% higher on average) the genetic groups, compared to EST-SSR markers. The highest percentage of polymorphism within the genetic groups was found with gSSR markers for robusta (89.2%) and for resistant arabica (39.5%). It was possible to differentiate all genotypes including the arabica-related accessions. Nevertheless, combined use of gSSR and EST-SSR markers is recommended for coffee molecular characterization, because EST-SSRs can provide complementary information.  相似文献   

19.
Interspecific triploid hybrid plants between the tetraploid species Coffea arabica L. and the diploid species C. canephora P. were backcrossed to C. arabica. Although characterised by a low production and an important fruit dropping, all attempted crosses (ie, 6) generated BC(1) progenies. Flow cytometric analysis of the nuclear DNA content revealed that most of the BC1 individuals were nearly tetraploid. Among the male gametes produced by the interspecific triploid hybrids, those presenting a high number of chromosomes appeared strongly favoured. Only pollen mother cells having nearly 22 chromosomes were effective, the others leading to deficient endosperm and fruit dropping. Molecular markers (ie, microsatellite and AFLP) combined with evaluations of morphological characteristics and resistance to leaf rust were applied to verify the occurrence of gene transfer from C. canephora into C. arabica, and to estimate the amount of introgression present in BC(1) individuals. The results reveal a strong deficiency in the C. canephroa alleles indicating a severe counter-selection against the introgression of genetic material from C. canephora into C. arabica by way of triploid hybrids. However, introgressants displaying desirable traits such as a high resistance to leaf rust were obtained. The low level of introgression could be an advantage by facilitating the recovery of the recurrent parent and possibly reducing the number of required backcrosses. On the other hand, this could be a limitation when attempting the transfer of a complex trait or several simply inherited traits.  相似文献   

20.
The majority of plant disease-resistance genes (R-genes) isolated so far encode a predicted nucleotide-binding site (NBS) domain. NBS domains related to R-genes show a highly conserved backbone of amino acid motifs, which makes it possible to isolate resistance gene analogues (RGAs) by PCR with degenerate primers. Multiple combinations of primers with low degeneracy, designed from two conserved motifs in the NBS regions of R-genes of various plants, were used on genomic DNA from coffee trees, an important perennial tropical crop. Nine distinct classes of RGAs of the NBS-like type, representing a highly diverse sample, were isolated from Coffea arabica and C. canephora species. The analysis of one coffee RGA family suggested point mutations as the primary source of diversity. With one exception, coffee RGA families appeared to be closely related in sequence to at least one cloned R-gene. In addition, deduced amino acid sequences of coffee RGAs were identified that showed strong sequence similarity to almost all known non-TIR (Toll/Interleukin 1 Receptor)-type R-genes. The high degree of similarity between particular coffee RGAs and R-genes isolated from other angiosperm species, such as Arabidopsis, tomato and rice, indicates an ancestral relationship and the existence of common ancestors. The data obtained from coffee species suggests that the evolution of NBS-encoding sequences involves the gradual accumulation of mutations and slow rates of divergence within distinct R-gene families, rather than being a rapid process. Functional inferences drawn from the suggested pattern of evolution of NBS-type R-genes is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号