首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
In nature, plants are subject to changes of tempera-ture. Thus, like other organisms, plants have evolved strategies for preventing damage caused by rapid changes in temperature and for repairing what damage is unavoidable. Heat stress responses have been well documented in a wide range of organisms. In all spe-cies studied, the heat shock (HS) response is charac-terized by a rapid production and a transient accumu-lation of specific families of proteins known as heat shock proteins (Hsps) th…  相似文献   

4.
5.
6.
As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self‐degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.  相似文献   

7.
植物在遭受环境胁迫时会产生一系列应激反应,而热激转录因子可通过介导热激蛋白或其他热诱导基因的转录和表达,来参与调控植物抵抗逆境胁迫过程和其他生命活动。主要介绍了植物热激转录因子的基本蛋白结构域,阐述了3类热激转录因子在抗极端温度(高温、低温)胁迫、干旱胁迫、高盐胁迫、活性氧胁迫中的功能与作用机制,并探讨和展望了植物热激转录因子在植物育种和提高植物抗逆性的研究中的发展与应用前景,以期为深入研究热激转录因子在调控植物抵抗逆境胁迫中的生物学功能与机制提供理论参考。  相似文献   

8.
Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified a Membrane Occupation and Recognition Nexus 1 (MORN1) gene as a contributor to natural variations of stress tolerance through genome-wide association study in Arabidopsis thaliana. Characterization of its loss-of-function mutant and natural variants revealed that the MORN1 gene is a positive regulator of plant growth, disease resistance, cold tolerance, and heat tolerance. The MORN1 protein is associated with the Golgi and is also partly associated with LD. Protein truncations that disrupt these associations abolished the biological function of the MORN1 protein. Furthermore, the MORN1 gene is a positive regulator of LD abundance, and its role in LD number regulation and stress tolerance is highly linked. Therefore, this study identifies MORN1 as a positive regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of plant growth and stress responses.  相似文献   

9.
10.
11.
12.
13.
随着温室效应的加剧,全球气候变暖已经成为现代农业生产体系所面临的严峻挑战.高温灾害性气候是影响作物产量的一种主要的非生物胁迫.因此,对于农作物生产而言,研究植物耐热信号转导机制不仅有重要的科学意义,而且有现实的紧迫性.最近几年,在阐明植物耐热信号转导机制的研究方面取得了很多重要的进展,这些进展涵盖植物高温胁迫的感受机制、热激转录因子和热激蛋白的表达调控、热激转录因子结合蛋白参与耐热性调控的分子机制等几个主要的方面.热胁迫影响细胞膜系统、RNA、蛋白质的稳定性,同时改变酶的活性和细胞骨架系统.当热胁迫来临时,植物的转录组会发生显著变化,所涉及的基因大约占基因组的2%.这些高温胁迫响应基因构成了热激响应网络,是植物抵御热胁迫的第一道防线.植物的耐热性分为基础耐热性和获得性耐热性.基础耐热性是植物固有的耐热性.获得性耐热性是温和的热驯化诱导的耐热性.获得性耐热性状的形成反映了植物在自然生长环境下适应高温胁迫的生理机制.  相似文献   

14.
15.
16.
17.
MBF1是一种进化上高度保守的转录共激活因子,存在于所有真核生物中,可通过连接基础转录机器组分与转录因子来激活基因转录。植物MBF1具有多种重要生物学功能,包括调控植物生长发育和逆境适应等。该文综述了植物MBF1分子结构与调控机制相关研究进展,重点总结了AtMBF1c参与植物热胁迫应答调控的分子机制。  相似文献   

18.
We report here on the characterization of heat shock factor 1 (HSF1), encoded by one of two HSF genes identified in the genome of Chlamydomonas reinhardtii. Chlamydomonas HSF1 shares features characteristic of class A HSFs of higher plants. HSF1 is weakly expressed under non-stress conditions and rapidly induced by heat shock. Heat shock also resulted in hyperphosphorylation of HSF1, and the extent of phosphorylation correlated with the degree of induction of heat shock genes, suggesting a role for phosphorylation in HSF1 activation. HSF1, like HSFs in yeasts, forms high-molecular-weight complexes, presumably trimers, under non-stress, stress and recovery conditions. Immunoprecipitation of HSF1 under these conditions led to the identification of cytosolic HSP70A as a protein constitutively interacting with HSF1. Strains in which HSF1 was strongly under-expressed by RNAi were highly sensitive to heat stress. 14C-labelling of nuclear-encoded proteins under heat stress revealed that synthesis of members of the HSP100, HSP90, HSP70, HSP60 and small HSP families in the HSF1-RNAi strains was dramatically reduced or completely abolished. This correlated with a complete loss of HSP gene induction at the RNA level. These data suggest that HSF1 is a key regulator of the stress response in Chlamydomonas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号