首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands.  相似文献   

2.

Background

Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk''s main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established.

Methodology/Principal Findings

In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17–amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules.

Conclusions/Significance

We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.  相似文献   

3.
The effects of three fatty acids on cytotoxic aggregate formation of Ca2+-depleted bovine α-lactalbumin (apo-BLA) have been studied by UV absorbance spectroscopy and transmission electron microscopy. The experimental results demonstrate that two unsaturated fatty acids, oleic acid and linoleic acid, and one saturated fatty acid, stearic acid, induce the intermediate of apo-BLA at pH 4.0-4.5 to form amorphous aggregates in time- and concentration-dependent manners. These aggregates are dissolved under physiological conditions at 37 °C and further characterized by fluorescence spectroscopy, circular dichroism and time-of-flight mass spectrometry. Our data here indicate that the structural characteristics of these aggregates are similar to those of HAMLET/BAMLET (human/bovine α-lactalbumin made lethal to tumor cells), a complex of the partially unfolded α-lactalbumin with oleic acid. Cell viability experiments indicate the aggregates of apo-BLA induced by oleic acid and linoleic acid show significant dose-dependent cytotoxicity to human lung tumor cells of A549 but those induced by stearic acid have no toxicity to tumor cells. Furthermore, the cytotoxic aggregates of apo-BLA induced by both unsaturated fatty acids induce apoptosis of human lung cancer cell line A549, suggesting that such cytotoxic aggregates of apo-BLA could be potential antitumor drugs. The present study provides insight into the mechanism of fatty acid-dependent oligomerization and cytotoxicity of α-lactalbumin, and will be helpful in the understanding of the molecular mechanism of HAMLET/BAMLET formation.  相似文献   

4.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

5.
6.
The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.  相似文献   

7.
Summary Human renal cell cancer (RCC) cell lines, ACHN and KRC/Y, with or without exposure to cytokines, were examined for their susceptibility to lymphokine-activated killer (LAK) cells. Flow-cytometric analysis demonstrated constitutional expression of class I antigen on both cell lines, which was enhanced by interferon (IFN), IFN and tumor necrosis factor (TNF). A 4-h51Cr-release cytotoxicity assay demonstrated that pretreatment of both cell lines with IFN or IFN, but not with TNF, decreased their susceptibility to LAK cells. IFN also decreased susceptibility to natural killer cells in a 16-h51Cr-release cytotoxicity assay. IFN treatment decreased the susceptibility of ACHN cells in a dose-dependent manner. Cold-target competition assay clearly showed that IFN- but not TNF-pretreated cells compete less effectively than do untreated target cells. Pretreatment with IFN, however, increased expression of intercellular adhesion molecule-1 (ICAM-1) to a degree comparable to that with TNF. Northern blot analyses using a 520-base-pair ICAM-1 cDNA as a probe demonstrated that more 3.3-kb mRNA is expressed in IFN- and TNF-pretreated cells. These results suggest that IFN-treated RCC cell lines may reduce their ability to be recognized by LAK cells, and that IFN-induced protection of RCC cell lines against LAK cells may depend upon a mechanism independent of the expression of class I antigens or ICAM-1 on tumor cells.  相似文献   

8.
Zheng Y  Shi X  Wang M  Jia Y  Li B  Zhang Y  Liu Q  Wang Y 《Molecular biology reports》2012,39(4):4229-4236
Overexpression of differentiated embryo chondrocyte 1 (DEC1) has been reported to contribute to the cellular differentiation, proliferation, and apoptosis of various cancers. Our previous studies have shown that DEC1 was highly expressed in gastric cancer (GCa) tissues. However, there is no report about the expression of DEC1 in GCa cell lines until now. In this study, We evaluated the mRNA and protein expression of DEC1 and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions in six GCa cell lines: BGC-823, MGC80-3, MKN1, AGS, FU97 and SGC-7901. An HIF-1α protein inhibitor was used to analyze the association of DEC1 and HIF-1α expression. Under normoxia, the mRNA expression of both HIF-1α and DEC1 was moderate, whereas the protein expression of DEC1 was higher than that of HIF-1α. Hypoxia induced the mRNA expression of DEC1 and the protein expression of HIF-1α and DEC1 in a time-dependent manner but had no effect on the mRNA expression of HIF-1α. Furthermore, inhibition of HIF-1α protein expression resulted in a significant decrease in both the mRNA and protein expression of DEC1. Taken together, DEC1 expression is correlated with HIF-1α protein in GCa cell line, blockage of HIF-1α protein led to reduced DEC1 expression. The efficacy of inhibiting HIF-1α and DEC1 expression should be tested in clinical trials as possible treatment for GCa.  相似文献   

9.
10.
The epithelial cell adhesion molecule (EpCAM) is expressed by a wide range of human carcinomas, making it an attractive diagnostic and therapeutic target in oncology. Its recent identification on cancer stem cells has raised further interest in its use for tumor targeting and therapy. Here, we present the characterization and therapeutic potential of 3–17I, a novel human EpCAM-targeting monoclonal antibody. Strong reaction of 3–17I was observed in all lung, colon, and breast human tumor biopsies evaluated. By flow cytometry and confocal fluorescence microscopy, we demonstrate that 3–17I specifically targets EpCAM-positive cell lines. We also show evidence for mAb-sequestration in endo-/lysosomes, suggesting internalization of 3–17I by receptor-mediated endocytosis. The ribosomal-inactivating toxin saporin was linked to 3–17I, creating the per se non-toxic immunotoxin 3–17I-saporin, a promising candidate for the drug delivery technology photochemical internalization (PCI). PCI is based on a light-controlled destruction of endolysosomal membranes and subsequent cytosolic release of the sequestered payload upon light exposure. EpCAM-positive human cancer cell lines MCF7 (breast), BxPC-3 (pancreas), WiDr (colon), and the EpCAM-negative COLO320DM (colon), were treated with 3–17I-saporin in combination with the clinically relevant photosensitizer TPCS2a (Amphinex), followed by exposure to light. No cytotoxicity was observed after treatment with 3–17I-saporin without light exposure. However, cell viability, proliferation and colony-forming capacity was strongly reduced in a light-dependent manner after PCI of 3–17I. Our results show that 3–17I is an excellent candidate for diagnosis of EpCAM-positive tumors and for development of clinically relevant antibody-drug conjugates, using PCI for the treatment of localized tumors.  相似文献   

11.
《MABS-AUSTIN》2013,5(4):1038-1050
The epithelial cell adhesion molecule (EpCAM) is expressed by a wide range of human carcinomas, making it an attractive diagnostic and therapeutic target in oncology. Its recent identification on cancer stem cells has raised further interest in its use for tumor targeting and therapy. Here, we present the characterization and therapeutic potential of 3–17I, a novel human EpCAM-targeting monoclonal antibody. Strong reaction of 3–17I was observed in all lung, colon, and breast human tumor biopsies evaluated. By flow cytometry and confocal fluorescence microscopy, we demonstrate that 3–17I specifically targets EpCAM-positive cell lines. We also show evidence for mAb-sequestration in endo-/lysosomes, suggesting internalization of 3–17I by receptor-mediated endocytosis. The ribosomal-inactivating toxin saporin was linked to 3–17I, creating the per se non-toxic immunotoxin 3–17I-saporin, a promising candidate for the drug delivery technology photochemical internalization (PCI). PCI is based on a light-controlled destruction of endolysosomal membranes and subsequent cytosolic release of the sequestered payload upon light exposure. EpCAM-positive human cancer cell lines MCF7 (breast), BxPC-3 (pancreas), WiDr (colon), and the EpCAM-negative COLO320DM (colon), were treated with 3–17I-saporin in combination with the clinically relevant photosensitizer TPCS2a (Amphinex), followed by exposure to light. No cytotoxicity was observed after treatment with 3–17I-saporin without light exposure. However, cell viability, proliferation and colony-forming capacity was strongly reduced in a light-dependent manner after PCI of 3–17I. Our results show that 3–17I is an excellent candidate for diagnosis of EpCAM-positive tumors and for development of clinically relevant antibody-drug conjugates, using PCI for the treatment of localized tumors.  相似文献   

12.
Cannabinoids have been reported to possess anti-tumorigenic activity in cancer models although their mechanism of action is not well understood. Here, we show that the synthetic cannabinoid WIN55,212-2 (WIN)-induced apoptosis in colon cancer cell lines is accompanied by endoplasmic reticulum stress induction. The formation of acidic vacuoles and the increase in LC3-II protein indicated the involvement of autophagic process which seemed to play a pro-survival role against the cytotoxic effects of the drug. However, the enhanced lysosomal membrane permeabilization (LMP) blocked the autophagic flux after the formation of autophagosomes as demonstrated by the accumulation of p62 and LC3, two markers of autophagic degradation. Data also provided evidence for a role for nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in cannabinoid signalling. PPARγ expression, at both protein and mRNA levels, was significantly down-regulated after WIN treatment and its inhibition, either by specific antagonists or by down-regulation via gene silencing, induced effects on cell viability as well as on ER stress and autophagic markers similar to those obtained in the presence of WIN. Moreover, the observation that the increase in p62 level and the induction of LMP were also modified by PPARγ antagonists seemed to indicate that PPARγ down-regulation was crucial to determinate the block of autophagic flux, thus confirming the critical role of PPARγ in WIN action. In conclusion, at our knowledge, our results are the first to show that the reduction of PPARγ levels contributes to WIN-induced colon carcinoma cell death by blocking the pro-survival autophagic response of cells.  相似文献   

13.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

14.
Here, we show that cell surface β1-integrin expression, cell adhesion to fibronectin, migration, and invasion were all significantly inhibited by α-lipoic acid. These effects were not observed when cells were treated with dihydrolipoic acid or caprylic acid. These data reveal that the 1,2-dithiolane structure plays an important role in the action of α-lipoic acid.  相似文献   

15.
Human osteosarcoma 143B cells were previously stably transfected with an αv integrin green flourescent protein (GFP) vector. 143B cells expressing αv integrin-GFP were transplanted orthotopically in the tibia of transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). The primary tumors acquired RFP-expressing stroma and were passaged orthotopically in the tibia in noncolored nude mice, which maintained the RFP stroma. The interaction of αv integrin-GFP expression in 143B cells with RFP-expressing host stromal cells was observed by confocal microscopy using the Olympus FV1000. Collagen fibers were imaged simultaneously in reflectance mode. The RFP-expressing stroma included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) which persisted even 3 weeks after passage to nontransgenic nude mice. CAFs expressing RFP were aligned between collagen fibers and cancer cells expressing αv integrin-GFP. Six weeks after transplantation, pulmonary metastases expressing αv integrin-GFP could be identified. TAMs expressing RFP accompanied metastasized osteosarcoma cells expressing αv integrin-GFP in the lung. The current study demonstrates the importance of αv integrin interaction with stromal elements in osteosarcoma.  相似文献   

16.
A multitude of plants have been used extensively for the treatment of cancers throughout the world. The protein, α, β momorcharin has been extracted from the plant Momordica charantia (MC), and it possesses anti-cancer and anti-HIV properties similar to the crude water and methanol soluble extract of the plant. This study investigated the anti-cancer effects and the cellular mechanisms of action of α, β momocharin (200–800 μM) on 1321N1, Gos-3, U87-MG, Sk Mel, Corl-23 and Weri Rb-1 cancer cell lines compared to normal healthy L6 muscle cell line measuring cell viability using MTT assay kit, Caspase-3 and 9 activities, cytochrome c release and intracellular free calcium concentrations [Ca2+]i. The results show that α, β momorcharin can evoke significant dose-dependent (P < 0.05; Student’s t test) decreases in the viability (increases in cell death) of 1321N1, Gos-3, U87-MG, Sk Mel, Corl-23 and Weri Rb-1 cancer cell lines compared to healthy L6 muscle cell line and untreated glioma cells. α, β momorcharin (800 μM) also evoked significant (P < 0.05) increases in caspase-3 and 9 activities and cytochrome c release. Similarly, α, β momorcharin elicited significant (P < 0.05) time-dependent elevation in [Ca2+]i in all five glioma cell lines compared to untreated cells. Together, the results have demonstrated that α, β momorcharin can exert its anti-cancer effect on different cancer cell lines by intracellular processes involving an insult to the mitochondria resulting in cellular calcium over loading, apoptosis, cytochrome release and subsequently, cell death.  相似文献   

17.
A series of alkyl α/β-(1→6)-diglucopyranosides 1-12 were synthesized and assessed for cytotoxicity against HL-60, U937, Molt-3 and MCF-7 cancer cell lines. The menthyl derivatives displayed strong cytotoxic properties showing IC(50) values between 6 and 16 μM. Furthermore, we demonstrated that the selected synthetic (+)-menthyl β-(1→6)-diglucopyranoside 5 induces apoptotic cell death in human leukemia cells through a mechanism that involves activation of multiple caspases. Cell death was completely prevented by the non-specific caspase inhibitor z-VAD-fmk and found to be associated with the release of cytochrome c, an increase in the expression of Bax levels and a decrease in the generation of reactive oxygen species.  相似文献   

18.
Dexamethasone inhibits -fetoprotein (AFP) synthesis, and stimulates albumin synthesis, in cultured hepatoma 7777 cells. These changes are due to a decrease in AFT-mRNA, and an increase in albumin-mRNA, in cells.  相似文献   

19.
A variety of mitochondria-targeted small molecules have been invented to manipulate mitochondrial redox activities and improve function in certain disease states. 3-Hydroxypropyl-triphenylphosphonium-conjugated imidazole-substituted oleic acid (TPP-IOA) was developed as a specific inhibitor of cytochrome c peroxidase activity that inhibits apoptosis by preventing cardiolipin oxidation and cytochrome c release to the cytosol. Here we evaluate the effects of TPP-IOA on oxidative phosphorylation in isolated mitochondria and on mitochondrial function in live cells. We demonstrate that, at concentrations similar to those required to achieve inhibition of cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation in isolated mitochondria. In live SH-SY5Y cells, TPP-IOA partially collapsed mitochondrial membrane potential, caused extensive fragmentation of the mitochondrial network, and decreased apparent mitochondrial abundance within 3 h of exposure. Many cultured cell lines rely primarily on aerobic glycolysis, potentially making them less sensitive to small molecules disrupting oxidative phosphorylation. We therefore determined the anti-apoptotic efficacy of TPP-IOA in SH-SY5Y cells growing in glucose or in galactose, the latter of which increases reliance on oxidative phosphorylation for ATP supply. The anti-apoptotic activity of TPP-IOA that was observed in glucose media was not seen in galactose media. It therefore appears that, at concentrations required to inhibit cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation. In light of these data it is predicted that potential future therapeutic applications of TPP-IOA will be restricted to highly glycolytic cell types with limited reliance on oxidative phosphorylation.  相似文献   

20.
In the present study, water extract of dried fruit of Zyzyphus Jujube was tested for its possible anticancer effect and induction of apoptosis on human tumor cell lines, HEp-2, HeLa and Jurkat cell lines. The inhibitory effect of water extract of this fruit on cell proliferation was assessed by MTT colorimetric assay. The induction of apoptosis of this extract was analyzed by DNA fragmentation analysis. Zyzyphus Jujube extract showed inhibitory effects on mentioned cell lines. Jurkat leukemic line was found the most sensitive cells with IC50 of 0.1 μg mL−1. Our study also showed a typical DNA laddering in this cell line. The present study showed cytotoxic activity of Zyzyphus Jujube on tumor cells. Although Zyzyphus Jujube has useful compounds for medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号