首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Polyunsaturated fatty acids (PUFAs) undergo autoxidation and generate reactive carbonyl compounds that are toxic to cells and associated with apoptotic cell death, age-related neurodegenerative diseases, and atherosclerosis. PUFA autoxidation is initiated by the abstraction of bis-allylic hydrogen atoms. Replacement of the bis-allylic hydrogen atoms with deuterium atoms (termed site-specific isotope-reinforcement) arrests PUFA autoxidation due to the isotope effect. Kinetic competition experiments show that the kinetic isotope effect for the propagation rate constant of Lin autoxidation compared to that of 11,11-D(2)-Lin is 12.8 ± 0.6. We investigate the effects of different isotope-reinforced PUFAs and natural PUFAs on the viability of coenzyme Q-deficient Saccharomyces cerevisiae coq mutants and wild-type yeast subjected to copper stress. Cells treated with a C11-BODIPY fluorescent probe to monitor lipid oxidation products show that lipid peroxidation precedes the loss of viability due to H-PUFA toxicity. We show that replacement of just one bis-allylic hydrogen atom with deuterium is sufficient to arrest lipid autoxidation. In contrast, PUFAs reinforced with two deuterium atoms at mono-allylic sites remain susceptible to autoxidation. Surprisingly, yeast treated with a mixture of approximately 20%:80% isotope-reinforced D-PUFA:natural H-PUFA are protected from lipid autoxidation-mediated cell killing. The findings reported here show that inclusion of only a small fraction of PUFAs deuterated at the bis-allylic sites is sufficient to profoundly inhibit the chain reaction of nondeuterated PUFAs in yeast.  相似文献   

2.
Du L  Su Y  Sun D  Zhu W  Wang J  Zhuang X  Zhou S  Lu Y 《FEMS yeast research》2008,8(4):531-539
Formic acid disrupts mitochondrial electron transport and sequentially causes cell death in mammalian ocular cells by an unidentified molecular mechanism. Here, we show that a low concentration of formic acid induces apoptosis-like cell death in the budding yeast Saccharomyces cerevisiae, with several morphological and biochemical changes that are typical of apoptosis, including chromatin condensation, DNA fragmentation, externalization of phosphatidylserine, reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and mitochondrion destruction. This process may not be dependent on the activation of Yca1p, the yeast caspase counterpart. In addition, the cell death induced by formic acid is associated with ROS burst,while intracellular ROS accumulate more rapidly and to a higher level in the YCA1 disruptant than in the wild-type strain during the progression of cell death. Our data indicate that formic acid induces yeast apoptosis via an Yca1p-independent pathway and it could be used as an extrinsic inducer for identifying the regulators downstream of ROS production in yeast.  相似文献   

3.
In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast-reactive oxygen species (ROS)-can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.  相似文献   

4.
Adenovirus E4orf4 protein has been shown to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed cells. Furthermore, E4orf4 also induces toxicity in Saccharomyces cerevisiae in a PP2A-dependent manner (D. Kornitzer and T. Kleinberger, submitted for publication). In this work, we utilized yeast cells to select for nonapoptotic E4orf4 mutants which, in turn, were shown to possess a diminished ability to bind PP2A. The success of this selection system will provide additional apoptosis-relevant mutants for E4orf4 research and strongly supports the relevance of E4orf4-induced toxicity in S. cerevisiae to E4orf4-induced apoptosis in mammalian cells.  相似文献   

5.
Methylglyoxal (MG) is a ubiquitous metabolite derived from glycolysis; however, this aldehyde kills all types of cell. We analyzed the properties of MG-induced cell death of the budding yeast Saccharomyces cerevisiae. The MCA1 gene encodes a caspase homologue that is involved in H2O2-induced apoptosis in yeast, although the disruption of MCA1 did not repress sensitivity to MG. In addition, the intracellular oxidation level did not increase under conditions in which MG kills the cell. Furthermore, the disruption of genes encoding antioxidant enzymes did not affect the susceptibility to MG. Here, we demonstrate that yeast cells killed by MG do not exhibit the characteristics of apoptosis in a TUNEL assay or an annexin V staining, but show those of necrosis upon propidium iodide staining. We demonstrate that MG at high concentrations provokes necrotic cell death without the generation of reactive oxygen species in S. cerevisiae.  相似文献   

6.
Treatment of yeast Saccharomyces cerevisiae with alpha-pheromone has been reported to lead to massive apoptosis of cells finding no conjugation partner [Severin FF, Hyman AA. Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 2002;12:R233-5]. We report here that this effect is not common in yeast. Using different yeast strains, we demonstrate that identical treatment results in a low mortality even after prolonged treatment with the pheromone. These findings are followed by a general discussion of the biological relevance of apoptosis in yeast.  相似文献   

7.
Copper and manganese induce yeast apoptosis via different pathways   总被引:1,自引:0,他引:1       下载免费PDF全文
Metal ions are essential as well as toxic to the cell. The mechanism of metal-induced toxicity is not well established. Here, for the first time we studied two essential nutritional elements, copper and manganese, for their apoptotic effects in yeast Saccharomyces cerevisiae. Although beneficial at subtoxic levels, we demonstrated that at moderately toxic levels, both metals induce extensive apoptosis in yeast cells. At even higher concentrations, necrosis takes over. Furthermore, we investigated the molecular pathways mediating Cu- and Mn-mediated apoptotic action. Mitochondria-defective yeast exhibit a much reduced apoptotic marker expression and better survival under Cu and Mn stress, indicating mitochondria are involved in both Cu- and Mn-induced apoptosis. Reactive oxygen species (ROS) are generated in high amounts in Cu- but not in Mn-induced cell death, and Cu toxicity can be alleviated by overexpression of superoxide dismutase 2, suggesting ROS mediate Cu but not Mn toxicity. Yeast metacaspase Yca1p is not involved in Cu-induced apoptosis, although it plays an important role in the Mn-induced process. A genetic screen identified Cpr3p, a yeast cyclophilin D homologue, as mediating the Cu-induced apoptotic program. Cpr3p mutant seems to eliminate Cu-induced apoptosis without affecting ROS production, while leaving necrosis intact. These results may provide important insight into a detailed understanding at the molecular and cellular level of metal toxicity and metal accumulation diseases.  相似文献   

8.
Bcl-2 family proteins play an evolutionarily conserved role in regulating the life and death of the cell. Certain proapoptotic members of the Bcl-2 family, Bax and Bak, have intrinsic cytotoxic activities in that they not only induce or sensitize mammalian cells to undergo apoptosis but also display a lethal phenotype when ectopically expressed in two yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. Furthermore, the antiapoptotic Bcl-2 and Bcl-XL proteins can protect yeast against Bax-mediated lethality, suggesting that the death-regulatory functions of these Bcl-2 family proteins are well preserved in yeast. These observations provide the opportunity to study the function of Bcl-2 family proteins in genetically tractable yeast and to apply classical yeast genetics and functional cloning approaches to the dissection of programmed cell death pathway regulated by Bcl-2 family proteins. We describe here methods used in our laboratory to express and to study the functions of Bcl-2 family proteins in both the budding yeast S. cerevisiae and the fission yeast S. pombe.  相似文献   

9.
Apoptosis is a common mode of programmed cell death in multicellular organisms. However, the recent observation of yeast cell death displaying the morphology of apoptosis has suggested the presence of an ancestral cell death machinery. Here we examined apoptotic features induced by reactive oxygen species (ROS) in yeast. Saccharomyces cerevisiae show typical apoptotic features upon exposure to ROS: membrane staining with annexin V and DNA fragmentation by the TUNEL assay. The detection of apoptotic features in yeast strongly support the existence of molecular machinery performing the basic pathways of apoptosis. The phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in a variety of cells. It is therefore of interest to determine whether the PI3K/PKB signaling pathway is capable of protecting yeast from apoptosis induced by ROS. We determined that PI3K/PKB is capable of significantly inhibiting ROS-evoked apoptosis in yeast. These results suggest that yeast may provide a suitable model system in which to study the apoptotic signaling pathway elicited by a variety of stimuli.  相似文献   

10.
Here we show that the Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.  相似文献   

11.
Reactive oxygen species and yeast apoptosis   总被引:2,自引:0,他引:2  
Apoptosis is associated in many cases with the generation of reactive oxygen species (ROS) in cells across a wide range of organisms including lower eukaryotes such as the yeast Saccharomyces cerevisiae. Currently there are many unresolved questions concerning the relationship between apoptosis and the generation of ROS. These include which ROS are involved in apoptosis, what mechanisms and targets are important and whether apoptosis is triggered by ROS damage or ROS are generated as a consequence or part of the cellular disruption that occurs during cell death. Here we review the nature of the ROS involved, the damage they cause to cells, summarise the responses of S. cerevisiae to ROS and discuss those aspects in which ROS affect cell integrity that may be relevant to the apoptotic process.  相似文献   

12.
Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone.  相似文献   

13.
Lesser CF  Miller SI 《The EMBO journal》2001,20(8):1840-1849
Bacterial virulence proteins that are translocated into eukaryotic cells were expressed in Saccharomyces cerevisiae to model human infection. The subcellular localization patterns of these proteins in yeast paralleled those previously observed during mammalian infection, including localization to the nucleus and plasma membrane. Localization of Salmonella SspA in yeast provided the first evidence that SspA interacts with actin in living cells. In many cases, expression of the bacterial virulence proteins conferred genetically exploitable growth phenotypes. In this way, Yersinia YopE toxicity was demonstrated to be linked to its Rho GTPase activating protein activity. YopE blocked polarization of the yeast cytoskeleton and cell cycle progression, while SspA altered polarity and inhibited depolymerization of the actin cytoskeleton. These activities are consistent with previously proposed or demonstrated effects on higher eukaryotes and provide new insights into the roles of these proteins in pathogenesis: SspA in directing formation of membrane ruffles and YopE in arresting cell division. Thus, study of bacterial virulence proteins in yeast is a powerful system to determine functions of these proteins, probe eukaryotic cellular processes and model mammalian infection.  相似文献   

14.
Glyoxalase I activity in alpha-type budding yeast of the Saccharomyces cerevisiae strain was increased by exposure of alpha-type cells to supernatant of a culture of a-type yeast cells, although glyoxalase II activity was decreased by the same treatment. The alteration of enzyme activity in the glyoxalase system occurred during the 30-60 min period after exposure of alpha-type cells to a-type culture supernatant. No change of glyoxalase I and II activities was found in the case of the alpha-type strain, S. cerevisiae VQ3 (alpha ste3-1), which is deficient in a-factor receptors.  相似文献   

15.
Koren A 《IUBMB life》2006,58(4):203-207
Programmed cell death in unicellular organisms is difficult to account for in evolutionary terms. In the budding yeast, Saccharomyces cerevisiae, existence of several morphological and biochemical features of apoptosis has been described, and genes responsible for execution of the death program have been identified. It is here suggested that apoptosis of yeast cells could provide direct benefit to the genes of the dying cells, by facilitating DNA transfer to surrounding cells. The biochemical details of yeast apoptotic death are considered in light of a gene transfer hypothesis.  相似文献   

16.
17.
In vivo studies and quantitative measurements of glucans provide evidence for a decreased rate of synthesis and a lower amount of alkali-soluble glucan in cells of the osmotically fragile VY1160 mutant of the yeast Saccharomyces cerevisiae. Combined genetic and biochemical analysis shows that the srb1 mutation is responsible for the reduction of alkali-soluble glucan. Data on beta(1----3) glucan synthase activity did not indicate the participation of the enzyme in the in vivo synthesis of alkali-soluble glucan and suggest the existence of other glucan synthases in Saccharomyces cerevisiae.  相似文献   

18.
Kamiguchi Y  Tateno H 《Mutation research》2002,513(1-2):183-191
An apoptotic phenotype induced by oxygen radicals or Bax expression has been observed in Saccharomyces cerevisiae yeast cells by electron and fluorescence microscopy. In this work, we analyzed DNA content and cellular morphology of S. cerevisiae after H(2)O(2) or UV treatment by TdT-mediated dUTP nick end labeling (TUNEL)-test and flow cytofluorimetry. A TUNEL-positive phenotype was observed in both cases, on the same samples a dose-dependent increase in the sub-G(1) population was pointed out by flow cytometry. Sub-G(1) cells were isolated by flow sorting and analyzed by electron microscopy. This population showed condensed chromatin in the nucleus and cell shrinking. This paper reports the first evidence of apoptosis in yeast cells induced by DNA damage after UV irradiation.  相似文献   

19.
This research was aimed at evaluating the antioxidant effects of combinations of alpha lipoic acid (LA), vitamin C (VC), N-acetyl cysteine (NAC) and alpha-tocopherol (TOC) on lipid level and fatty acid composition of C. tropicalis (ATCC 13803) against hydrogen peroxide toxicity. According to the experimental results, the cell density of C. tropicalis increased significantly in NAC+LA+H2O2, NAC+TOC+ H2O2 and NAC+VC+H2O2 groups (p<0.001) at the end of 48 and 72 h incubation times. The total lipid level in H2O2 and H2O2 + antioxidant-supplemented groups was lower than that of the control group. In the fatty acid composition of C. tropicalis, the palmitic acid level was raised in the NAC group (p<0.05), whereas its level was reduced in the other supplemented groups. While the oleic acid level increased in NAC+TOC+H2O2 and NAC+VC+H2O2 (p<0.001) groups, its level slightly decreased in the H2O2 group. The linolenic acid level was low in all the supplemented groups, but linoleic acid and total mono-unsaturated fatty acid (MUFA) levels were high in these groups compared with the control group. Total polyunsaturated fatty acid level (PUFA) decreased in NAC and H2O2 groups (p<0.01), but its level increased in NAC+LA+H2O2 and NAC+TOC+H2O2 groups (respectively, p<0.01, p<0.001). Total saturated fatty acid level decreased significantly in NAC+TOC+H2O2, NAC+H2O2 and NAC+VC+H2O2 (p<0.001) groups (p<0.01), whereas total unsaturated fatty acid level increased in NAC, NAC+H2O2, NAC+LA+H2O2, NAC+TOC+H2O2 and NAC+VC+H2O2 groups. In conclusion, our data showed that the levels of total unsaturated fatty acid, MUFA and PUFA were raised with the combinations of NAC and TOC, LA and VC in C. tropicalis cells subjected to hydrogen peroxide toxicity.  相似文献   

20.
α亚麻酸(ALA)被称为必需脂肪酸,对人体有一系列的保健作用。ω-3脂肪酸脱氢酶(FAD)催化亚油酸(LA)生成ALA。大豆种子油中ALA含量较高,为了研究大豆ω3FAD的功能,用RTPCR方法从大豆未成熟种子中扩增出GmFAD3C的cDNA,克隆到酵母表达载体p416中,并用醋酸锂法转化酿酒酵母营养缺陷型K601,经筛选鉴定,得到阳性克隆。气相色谱分析脂肪酸成分,发现工程菌产生了新的脂肪成分ALA,含量占总脂肪酸的3.1%,LA含量与对照相比相应地下降,证明该基因编码的蛋白具有催化18碳多不饱和脂肪酸(PUFA)底物LA在Δ15位脱氢生成ALA的ω3FAD功能,首次实现大豆ω-3脂肪酸脱氢酶基因在酿酒酵母K601p416系统中的表达,建立了一种新的高效低成本的FAD酵母表达系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号