首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Nonsense-mediated decay does not occur within the yeast nucleus   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
4.
In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3′-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p.  相似文献   

5.
6.
7.
The nonsense-mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature stop codons (PTCs). In Caenorhabditis elegans, seven genes (smg1-7) playing an essential role in NMD have been identified. Only SMG2-4 (known as UPF1-3) have orthologs in Saccharomyces cerevisiae. Here we show that the Drosophila orthologs of UPF1-3, SMG1, SMG5 and SMG6 are required for the degradation of PTC-containing mRNAs, but that there is no SMG7 ortholog in this organism. In contrast, orthologs of SMG5-7 are encoded by the human genome and all three are required for NMD. In human cells, exon boundaries have been shown to play a critical role in defining PTCs. This role is mediated by components of the exon junction complex (EJC). Contrary to expectation, however, we show that the components of the EJC are dispensable for NMD in Drosophila cells. Consistently, PTC definition occurs independently of exon boundaries in DROSOPHILA: Our findings reveal that despite conservation of the NMD machinery, different mechanisms have evolved to discriminate premature from natural stop codons in metazoa.  相似文献   

8.
9.
In eukaryotes, genes carrying premature termination codons (PTCs) are often associated with decreased mRNA levels compared with their counterparts without PTCs. PTC-harboring mRNA is rapidly degraded through the nonsense-mediated mRNA decay (NMD) pathway to prevent the accumulation of potentially detrimental truncated proteins. In a native ecotype of Nicotiana attenuata collected from Arizona (AZ), the mRNA levels of a trypsin proteinase inhibitor ( TPI ) gene are substantially lower than in plants collected from Utah (UT). Cloning the AZ TPI gene revealed a 6 bp deletion mutation in exon 2 resulting in a PTC and decreased mRNA levels through NMD. Silencing UPF1 , 2 and 3 in N. attenuata AZ plants by virus-induced gene silencing (VIGS) enhanced the levels of PTC-harboring TPI mRNA, demonstrating a conserved role for UPF genes in plants. Furthermore, using cell suspension cultures that express variants of the TPI construct, we demonstrate that both intron-containing and intronless genes are subject to NMD in plants; unlike PTCs in mammals, PTCs downstream of introns activate NMD in plants. However, when a PTC is only 4 bp upstream of an intron, the NMD surveillance mechanism is abrogated. We also demonstrate that, in an intronless TPI gene, a PTC located at the beginning or the end of the coding sequence triggers NMD less efficiently than do PTCs located at the middle of the coding sequence. Taken together, these results highlight the complexity of the NMD activation mechanisms in plants.  相似文献   

10.
Regulation of poly(A) tail size of vasopressin mRNA   总被引:5,自引:0,他引:5  
  相似文献   

11.
Sun X  Moriarty PM  Maquat LE 《The EMBO journal》2000,19(17):4734-4744
mRNA for glutathione peroxidase 1 (GPx1) is subject to cytoplasmic nonsense-mediated decay (NMD) when the UGA selenocysteine (Sec) codon is recognized as nonsense. Here, we demonstrate by moving the sole intron of the GPx1 gene that either the Sec codon or a TAA codon in its place elicits NMD when located >/=59 bp but not 相似文献   

12.
Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.  相似文献   

13.
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.  相似文献   

14.
mRNA poly(A) tail, a 3'' enhancer of translational initiation.   总被引:20,自引:13,他引:20       下载免费PDF全文
To evaluate the hypothesis that the 3' poly(A) tract of mRNA plays a role in translational initiation, we constructed derivatives of pSP65 which direct the in vitro synthesis of mRNAs with different poly(A) tail lengths and compared, in reticulocyte extracts, the relative efficiencies with which such mRNAs were translated, degraded, recruited into polysomes, and assembled into messenger ribonucleoproteins or intermediates in the translational initiation pathway. Relative to mRNAs which were polyadenylated, we found that nonpolyadenylated [poly(A)-]mRNAs had a reduced translational capacity which was not due to an increase in their decay rates, but was attributable to a reduction in their efficiency of recruitment into polysomes. The defect in poly(A)- mRNAs affected a late step in translational initiation, was distinct from the phenotype associated with cap-deficient mRNAs, and resulted in a reduced ability to form 80S initiation complexes. Moreover, poly(A) added in trans inhibited translation from capped polyadenylated mRNAs but stimulated translation from capped poly(A)- mRNAs. We suggest that the presence of a 3' poly(A) tail may facilitate the binding of an initiation factor or ribosomal subunit at the mRNA 5' end.  相似文献   

15.
16.
17.
Calpains are Ca(2+)-dependent, intracellular cysteine proteases involved in many physiological functions. How calpains are activated in the cell is unknown because the average intracellular concentration of Ca(2+) is orders of magnitude lower than that needed for half-maximal activation of the enzyme in vitro. Two of the proposed mechanisms by which calpains can overcome this Ca(2+) concentration differential are autoproteolysis (autolysis) and subunit dissociation, both of which could release constraints on the core by breaking the link between the anchor helix and the small subunit to allow the active site to form. By measuring the rate of autolysis at different sites in calpain, we show that while the anchor helix is one of the first targets to be cut, this occurs in the same time-frame as several potentially inactivating cleavages in Domain III. Thus autolytic activation would overlap with inactivation. We also show that the small subunit does not dissociate from the large subunit, but is proteolyzed to a 40-45k heterodimer of Domains IV and VI. It is likely that this autolysis-generated heterodimer has previously been misidentified as the small subunit homodimer produced by subunit dissociation. We propose a model for m-calpain activation that does not involve either autolysis or subunit dissociation.  相似文献   

18.
19.
In a previous paper (Krawiec, Z., Biliński, T., Schüller, C. & Ruis, H., 2000, Acta Biochim. Polon. 47, 201-207) we have shown that catalase T holoenzyme is synthesized in the absence of oxygen after treatment of anaerobic yeast cultures with 0.3 M. NaCl, or during heat shock. This finding suggests that heme moiety of the enzyme can either be formed de novo in the absence of oxygen, or derives from the preexisting heme pool present in cells used as inoculum. The strain bearing hem1 mutation, resulting in inability to form delta-aminolevulinate (ALA), the first committed precursor of heme, was used in order to form heme-depleted cells used as inocula. The cultures were supplemented with ALA at the end of anaerobic growth prior the stress treatment. The appearance of active catalase T in the stressed cells strongly suggests that heme moiety of catalase T is formed in the absence of oxygen. This finding suggests the necessity to reconsider current opinions concerning mechanisms of heme synthesis and the role of heme as an oxygen sensor.  相似文献   

20.
Incorporation of 3H-adenine into nuclear DNA in a short pulse in mid-S in a synchronised culture of Saccharomyces cerevisiae was unaffected by the presence of 100 μg/ml cycloheximide. However, colorimetric DNA analyses showed that entry into S was completely blocked by adding the drug at times earlier than about 10 min before initiation of replication. Cell autoradiography of cultures labelled in various regimes showed that at this time there is a cycloheximide-transition point at which the cell acquires the capacity to both initiate and complete a whole round of replication in the presence of 100 μg/ml of cycloheximide. Thus, all the proteins required for passage through one S period are made in advance of initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号