首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homozygous recessive cardiac mutant gene c in the axolotl, Ambystoma mexicanum, results in a failure of the embryonic heart to initiate beating. Previous studies show that mutant axolotl hearts fail to form sarcomeric myofibrils even though hearts from their normal siblings exhibit organized myofibrils beginning at stage 34–35. In the present study, the proteins titin and myosin are studied using normal (+/+) axolotl embryonic hearts at stages 26–35. Additionally, titin is examined in normal (+/c) and cardiac mutant (c/c) embryonic axolotl hearts using immunofluorescent microscopy at stages 35–42. At tailbud stage-26, the ventromedially migrating sheets of precardiac mesoderm appear as two-cell-layers. Myosin shows periodic staining at the cell peripheries of the presumptive heart cells at this stage, whereas titin is not yet detectable by immunofluorescent microscopy. At preheartbeat stages 32–33, a myocardial tube begins to form around the endocardial tube. In some areas, periodic myosin staining is found to be separated from the titin staining; other areas in the heart at this stage show a co-localization of the two proteins. Both titin and myosin begin to incorporate into myofibrils at stage 35, when normal hearts initiate beating. Additionally, areas with amorphous staining for both proteins are observed at this stage. These observations indicate that titin and myosin accumulate independently at very early premyofibril stages; the two proteins then appear to associate closely just before assembly into myofibrils. Staining for titin in freshly frozen and paraffin-embedded tissues of normal embryonic hearts at stages 35, 39, and 41 reveals an increased organization of the protein into sarcomeres as development progresses. The mutant siblings, however, first show titin staining only limited to the peripheries of yolk platelets. Although substantial quantities of titin accumulate in mutant hearts at later stages of development (39 and 41), it does not become organized into myofibrils as in normal cells at these stages. © 1994 Wiley-Liss, Inc.  相似文献   

2.
A strain of axolotl, Ambystoma mexicanum, that carries the cardiac lethal or c gene presents an excellent model system in which to study inductive interactions during heart development. Embryos homozygous for gene c contain hearts that fail to beat and do not form sarcomeric myofibrils even though muscle proteins are present. Although they can survive for approximately three weeks, mutant embryos inevitably die due to lack of circulation. Embryonic axolotl hearts can be maintained easily in organ culture using only Holtfreter's solution as a culture medium. Mutant hearts can be induced to differentiate in vitro into functional cardiac muscle containing sarcomeric myofibrils by coculturing the mutant heart tube with anterior endoderm from a normal embryo. The induction of muscle differentiation can also be mediated through organ culture of mutant heart tubes in medium 'conditioned' by normal anterior endoderm. Ribonuclease was shown to abolish the ability of endoderm-conditioned medium to induce cardiac muscle differentiation. The addition of RNA extracted from normal early embryonic anterior endoderm to organ cultures of mutant hearts stimulated the differentiation of these tissues into contractile cardiac muscle containing well-organized sarcomeric myofibrils, while RNA extracted from early embryonic liver or neural tube did not induce either muscular contraction or myofibrillogenesis. Thus, RNA from anterior endoderm of normal embryos induces myofibrillogenesis and the development of contractile activity in mutant hearts, thereby correcting the genetic defect.  相似文献   

3.
Development of left/right handedness in the chick heart.   总被引:2,自引:0,他引:2  
The chick heart tube develops from the fusion of the right and left areas of precardiac mesoderm and in almost all cases loops to the embryo's right-hand side. We have investigated whether any intrinsic difference exists in the right and left areas of precardiac mesoderm, that influences the direction of looping of the heart tube. Chick embryos incubated to stages 4,5 and 6 were cultured by the New method. Areas of precardiac mesoderm were exchanged between donor and host embryos of the same stage and different stages to form control, double-right and double-left sided embryos. Overall, double-right sided embryos formed many more left-hand loops than double-left sided embryos. At stages 4 and 5 a small percentage of double-right embryos formed left-hand loops (13%) whereas at stage 6 almost 50% of hearts had left-hand loops. Control embryos formed right-hand loops in 97% of cases. The stability of right-hand heart looping by double-left sided embryos, may be related to the process of 'conversion', whereas the direction of looping by double-right sided embryos has become randomised. There is some indication that an intrinsic change occurred in the precardiac mesoderm between stages 5 and 6 that later influenced the direction of looping of the heart tube. The direction of body turning is suggested to be linked to the direction of heart looping.  相似文献   

4.
5.
Heparan sulfate (HS) has been shown to be involved in left-right asymmetry formation, including the process of dextral heart looping during embryonic development. The structural features of HS required in this process, however, have not been explored. In this study, we examined the structure of HS from the heart-forming regions (or heart fields) of Hamburger and Hamilton stage 5-9 chick embryos. No significant differences were found in HS to chondroitin sulfate (CS) ratio, HS chain length, or [35S] sulfate incorporation at HS disaccharide level between the left and the right heart fields. Compared to other parts of the embryo, however, lower ratio of HS to CS, shorter HS chain length, and higher [35S] sulfate incorporation at 6-O position of the glucosamine residue in the HS chains were observed in the heart-forming regions. Moreover, HS from the left and the right heart fields exhibit differential cleavage by heparanase, an endo-beta-d- glucuronidase that cleaves specific sequences within the HS chain. In embryo culture, microinjection of the active human heparanase enzyme into the right but not the left pericardial cavity at stage 7-8+ resulted in reversed heart looping in a dose-dependent manner. Heart reversal following microinjection of heparin or heparin derivatives suggests the involvement of N- and 6-O-sulfation but not 2-O-sulfation in the heart looping process.  相似文献   

6.
Cardiac looping is a vital morphogenetic process that transforms the initially straight heart tube into a curved tube normally directed toward the right side of the embryo. While recent work has brought major advances in our understanding of the genetic and molecular pathways involved in looping, the biophysical mechanisms that drive this process have remained poorly understood. This paper examines the role of biomechanical forces in cardiac rotation during the initial stages of looping, when the heart bends and rotates into a c-shaped tube (c-looping). Embryonic chick hearts were subjected to mechanical and chemical perturbations, and tissue stress and strain were studied using dissection and fluorescent labeling, respectively. The results suggest that (1) the heart contains little or no intrinsic ability to rotate, as external forces exerted by the splanchnopleure (SPL) and the omphalomesenteric veins (OVs) drive rotation; (2) unbalanced forces in the omphalomesenteric veins play a role in left-right looping directionality; and (3) in addition to ventral bending and rightward rotation, the heart tube also bends slightly toward the right. The results of this study may help investigators searching for the link between gene expression and the mechanical processes that drive looping.  相似文献   

7.
During vertebrate cardiac development, the heart tube formed by fusion of right and left presumptive cardiac mesoderms (PCMs) undergoes looping toward the right, resulting in an asymmetrical heart. Here, we examined the right and left PCMs with regard to heart-tube looping using right- and left-half newt embryos (Cynops pyrrhogaster ). In the half embryos, the rightward (normal) loop of the heart tube was formed from the left PCM, irrespective of the timing of its separation, while the leftward (reversed) loop of the heart tube was formed from the right PCM, separated by stage 18. In addition, the direction of the leftward loop was inverted to the rightward direction in right-half embryos bisected after stage 18. Incision or resection of the embryonic caudal region implicated interactions between the right and left sides of this region as crucial for inverting the direction of the heart-tube loop from leftward to rightward in the right-half embryos. In situ hybridization of CyNodal (Cynops nodal-related gene) suggested that the inversion of heart looping in the right-half embryos has no association with the CyNodal expression pattern. Based on these findings, we propose a mechanism for the rightward looping underlying normal amphibian cardiac development.  相似文献   

8.
Recent studies in chick and mouse embryos have identified a previously unrecognized secondary heart field (SHF), located in the ventral midline splanchnic mesenchyme, which provides additional myocardial cells to the outflow tract as the heart tube lengthens during cardiac looping. In order to further delineate the contribution of this secondary myocardium to outflow development, we labeled the right SHF of Hamburger-Hamilton (HH) stage 14 chick embryos via microinjection of DiI/rhodamine and followed the fluorescently labeled cells over a 96-h time period. These experiments confirmed the movement of the SHF into the outflow and its spiraling migration distally, with the right side of the SHF contributing to the left side of the outflow. In contrast, when the right SHF was labeled at HH18, the fluorescence was limited to the caudal wall of the lengthening aortic sac. We then injected a combination of DiI and neutral red dye, and ablated the SHF in HH14 or 18 chick embryos. Embryos were allowed to develop until day 9, and harvested for assessment of outflow alignment. Of the embryos ablated at HH14, 76% demonstrated cardiac defects including overriding aorta and pulmonary atresia, while none of the sham-operated controls were affected. In addition, the more severely affected embryos demonstrated coronary artery anomalies. The embryos ablated at HH18 also manifested coronary artery anomalies but maintained normal outflow alignment. Therefore, the myocardium added to the outflow by the SHF at earlier stages is required for the elongation and appropriate alignment of the outflow tract. However, at later stages, the SHF contributes to the smooth muscle component of the outflow vessels above the pulmonary and aortic valves which is important for the development of the coronary artery stems. This work suggests a role for the SHF in a subset of congenital heart defects that have overriding aorta and coronary artery anomalies, such as tetralogy of Fallot and double outlet right ventricle.  相似文献   

9.
It is generally assumed that in amphibian embryos neural crest cells migrate dorsally, where they form the mesenchyme of the dorsal fin, laterally (between somites and epidermis), where they give rise to pigment cells, and ventromedially (between somites and neural tube), where they form the elements of the peripheral nervous system. While there is agreement about the crest migratory routes in the axolotl (Ambystoma mexicanum), different opinions exist about the lateral pathway in Xenopus. We investigated neural crest cell migration in Xenopus (stages 23, 32, 35/36 and 41) using the X. laevis-X. borealis nuclear marker system and could not find evidence for cells migrating laterally. We have also used immunohistochemistry to study the distribution of the extracellular matrix (ECM) glycoproteins fibronectin (FN) and tenascin (TN), which have been implicated in directing neural crest cells during their migrations in avian and mammalian embryos, in the neural crest migratory pathways of Xenopus and the axolotl. In premigratory stages of the crest, both in Xenopus (stage 22) and the axolotl (stage 25), FN was found subepidermally and in extracellular spaces around the neural tube, notochord and somites. The staining was particularly intense in the dorsal part of the embryo, but it was also present along the visceral and parietal layers of the lateral plate mesoderm. TN, in contrast, was found only in the anterior trunk mesoderm in Xenopus; in the axolotl, it was absent. During neural crest cell migration in Xenopus (stages 25-33) and the axolotl (stages 28-35), anti-FN stained the ECM throughout the embryo, whereas anti-TN staining was limited to dorsal regions. There it was particularly intense medially, i.e. in the dorsal fin, around the neural tube, notochord, dorsal aorta and at the medial surface of the somites (stage 35 in both species). During postmigratory stages in Xenopus (stage 40), anti-FN staining was less intense than anti-TN staining. In culture, axolotl neural crest cells spread differently on FN- and TN-coated substrata. On TN, the onset of cellular outgrowth was delayed for about 1 day, but after 3 days the extent of outgrowth was indistinguishable from cultures grown on FN. However, neural crest cells in 3-day-old cultures were much more flattened on FN than on TN. We conclude that both FN and TN are present in the ECM that lines the neural crest migratory pathways of amphibian embryos at the time when the neural crest cells are actively migrating. FN is present in the embryonic ECM before the onset of neural crest migration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
The heart of any vertebrate is formed from an apparently symmetric cardiac tube that loops consistently in the same direction along the left-right axis of the embryo. In the amphibian Xenopus laevis, inhibition of proteoglycan synthesis by p-nitrophenyl-beta-D-xylopyranoside during a narrow period of development from late gastrula to early neurula specifically eliminated the looping of the cardiac tube. Most of the proteoglycans synthesized during this period were heparan sulfate proteoglycans. Treatment with p-nitrophenyl-alpha-D-xylopyranoside, an analogue that does not inhibit proteoglycan synthesis, did not interfere with cardiac looping. The critical period for proteoglycan synthesis was coincident with the migration of cardiac primordia to the ventral midline. The inhibition of cardiac looping was further explored in explants of cardiac primordia and anterioventral ectoderm. In recombinate embryos in which half the embryo, and thus one of the two heart primordia, was treated with p-nitrophenyl-beta-D-xylopyranoside, and the other half was untreated, cardiac looping occurred normally. It is proposed that the left-right axis in Xenopus, as reflected in cardiac looping, is established early in development, and that proteoglycan synthesis is involved in the transduction of left-right axial information to the cardiac primordia during migration.  相似文献   

12.
The role of microtubules in the early development of the chick embryo heart was studied. The microtubules were disrupted by treatment of the embryos with colchicine. The embryos were divided for study into three groups: (I) before the fusion of the paired cardiac primordia; (II) before the starting of the cardiac loop, and (III) during the formation of the looping process. Colchicine did not impair the fusion of the paired heart primordia nor the acquisition of an asymmetric C-shaped form. However, the normal counterclockwise movement of the heart loop was prevented. From these results we conclude that the formation of the tubular heart and its looping are independent of the integrity of the microtubular system. Under the effects of colchicine the developing myocytes rounded up bulging into the pericardial cavity. The cell contours became scarcely discernible and the individual cell surfaces gave rise to blebs and ruffles of different sizes. In older embryos, clefts of different sizes appeared between the myocardial cells. The effects of colchicine on the pulsatile activity of the heart were recorded. These effects, as well as those on the cell surface characteristics, were found to be age dependent. The more mature the hearts were, the more resistant to colchicine they became. The developmental significance of the results reported here is discussed.  相似文献   

13.
研究以斑马鱼(Danio rerio)为研究模型,选择心脏和血管荧光标记的2个品系斑马鱼为实验材料,设定低氧和常氧2种水体溶氧条件,用荧光显微镜检测低氧胁迫对胚胎形态结构、心脏和血管外部形态、心率、胚胎躯干部主要血管形成的影响.研究发现低氧导致胚胎存活率低于常氧.低氧不仅滞后胚胎发育,而且造成胚胎形态异常.低氧胁迫后斑...  相似文献   

14.
In the Mexican axolotl (salamander), Ambystoma mexicanum, a recessive cardiac lethal mutation causes an incomplete differentiation of the myocardium. Mutant hearts lack organized sarcomeric myofibrils and do not contract throughout their lengths. We have previously shown that RNA purified from normal anterior endoderm or from juvenile heart tissue is able to rescue mutant embryonic hearts in an in vitro organ culture system. Under these conditions as many as 55% of formerly quiescent mutant hearts initiate regular contractions within 48 hours. After earlier reports that transforming growth factor-1 and, to a lesser extent, platelet-derived growth factor-BB could substitute for anterior endoderm as a promoter of cardiac mesodermal differentiation in normal axolotl embryos, we decided to examine the effect of growth factors in the cardiac mutant axolotl system. In one type of experiment, stage 35 mutant hearts were incubated in activin A, transforming growth factors-1 or 2, platelet-derived growth factor, or epidermal growth factor, but no rescue of mutant hearts was achieved. Considering the possibility that growth factors would only be effective at earlier stages of development, we tested transforming growth factors-1 and 5, and activin A on normal and mutant precardiac mesoderm explanted in the absence of endoderm at neurula stage 14. We found that, although these growth factors stimulated heart tube formation in both normal and mutant mesodermal explants, only normal explants contained contractile myocardial tissue. We hypothesize that transforming growth factor- superfamily peptides initiate a cascade of responses in mesoderm that result in both changes in cell shape (the basis for heart morphogenesis) and terminal myocardial cytodifferentiation. The cardiac lethal mutation appears to be deficient only in the latter process.This work was supported by NIH grants HL-32184 and HL-37702 and a grant-in-aid from the American Heart Association to L.F.L.F.J. Mangiacapra and M.E. Fransen contributed equally to this work  相似文献   

15.
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.  相似文献   

16.
Epicardial strains were measured in Hamburger-Hamilton stage 11 and 12 embryonic chick hearts (1.6-2.0 days of incubation). These stages include part of the early phase of cardiac looping, as the initially straight heart tube bends and twists to form a curved c-shaped tube. By analyzing the motion of microbeads placed on the myocardial surface, we measured strains near the outer curvature, in the central region, and near the inner curvature of the primitive ventricle. No significant differences in strain were found between stages. Relative to end diastole, all three regions shortened by about 10% during systole in the circumferential direction, and the outer curvature shortened longitudinally by about 5%. In contrast, and unlike strains in older hearts, the inner curvature and central regions elongated by approximately 5-10% in the longitudinal direction during systole. These results are consistent with microstructural data and suggest that the material properties of the outer curvature are relatively isotropic, whereas the properties of the central and inner curvature regions are orthotropic, with contractile stress exerted primarily in the circumferential direction.  相似文献   

17.
The restoration of acetylcholinesterase (AChE) activity in axolotl Ambystoma mexicanum embryo after treatment at 38-42 stages with irreversibly AChE-inhibiting Gd-7 phosphororganic inhibitor in concentrations, significantly decreasing AChE activity level, but not interfering with ontogenesis has been studied. The rate of AChE activity restoration in Gd-7 treated axolotl embryo depends on the level of the enzyme restraint and the stage of the embryo development. The value of maximal restoration of AChE activity differs; it is less in embryos, treated with Gd-7 at later stages of development. The ability of the embryos to swim restores parallel to the increase in AChE activity. The data obtained suggest that axolotl embryo possess compensatory mechanism for increasing AChE biosynthesis after decrease in its activity caused by Gd-7. Acetylcholine, accumulating in the organism at partial inactivation of AChE by phosphororganic inhibitor may participate in this mechanism.  相似文献   

18.
During the morphogenetic process of cardiac looping, the initially straight cardiac tube bends and twists into a curved tube. The biophysical mechanisms that drive looping remain unknown, but the process clearly involves mechanical forces. Hence, it is important to determine mechanical properties of the early heart, which is a muscle-wrapped tube consisting primarily of a thin outer layer of myocardium surrounding a thick extracellular matrix compartment known as cardiac jelly. In this work, we used microindentation experiments and finite element modeling, combined with an inverse computational method, to determine constitutive relations for the myocardium and cardiac jelly at the outer curvature of stage 12 chick hearts. Material coefficients for exponential strain-energy density functions were found by fitting force-displacement and surface displacement data near the indenter Residual stress in the myocardium also was estimated. These results should be useful for computational models of the looping heart.  相似文献   

19.
The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.  相似文献   

20.
In an effort to isolate genes required for heart development and to further our understanding of cardiac specification at the molecular level, we screened PlacZ enhancer trap lines for expression in the Drosophila heart. One of the lines generated in this screen, designated B2-2-15, was particularly interesting because of its early pattern of expression in cardiac precursor cells, which is dependent on the homeobox gene tinman, a key determinant of heart development in Drosophila. We isolated and characterized a gene in the vicinity of B2-2-15 that exhibits an identical expression pattern than the reporter gene of the enhancer trap. The product of his gene, apontic (apt; see also Gellon et al., 1997), does not appear to have any homology with known genes. apt mutant embryos show distinct abnormalities in heart morphology as early as mid-embryonic stages when the heat tube assembles, in that segments of heart cells (those of myocardial and pericardial identity) are often missing. Most strikingly, however, apt mutant embryos or larvae only develop a much reduced heart rate, perhaps because of defects in the assembly of an intact heart tube and/or because of defects in the function or physiological control of the myocardial cells, which normally mediate heart contractions. These cardiac defects may be the cause of death of these mutants during late embryonic or early larval stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号