首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.  相似文献   

2.
Herbaria are potentially important repositories of living seeds that could be useful for recovery of rare plant species. To examine this capacity, we tested seed germination of rare milkweed (Asclepias) and milkvetch (Astragalus) species representing different collection dates and different herbaria. These groups have contrasting seed characteristics, with greater potential for longevity in the nonpermeable hard-coated milkvetch seeds. Twelve-year-old Asclepias lanuginosa seeds failed to germinate. However, we achieved 45% germination from three-year-old Asclepias meadii seeds, but germination dropped to 0% after ages of four to five years. Astragalus neglectus seeds germinated from 97-, 48-, and 28-year-old herbarium specimens, and Astragalus tennesseensis seeds germinated from a four-year-old collection. Seedlings produced from these experiments were incorporated into ex situ garden populations for recovery or restoration of rare species populations. Different herbarium pest control techniques may have significant bearing on the viability of seeds stored on herbarium specimens. Microwaving can cause precipitous loss of seed viability, while deep-freezing appears to allow some seeds to remain viable. Potentially live seeds of rare species should be stored under conditions that enhance their long-term viability.  相似文献   

3.
Effects of bird ingestion on seed germination of Sorbus commixta   总被引:1,自引:0,他引:1  
To determine the effects of ingestion by birds on seed germination, we performed germination experiments in the field and laboratory with Sorbus commixta. The germination of four groups of seeds was compared: ingested seeds, seeds defecated in feces after feeding of fruits to birds; extracted seeds, seeds deliberately extracted from the fruit pulp; juiced seeds, seeds plus the juice of the pulp after seeds had been deliberately extracted from the pulp; intact seeds, seeds in untreated intact fruits. In the laboratory, intact and juiced seeds hardly germinated, but ingested and extracted seeds germinated. Thus, the pulp and its juice appeared to inhibit germination, but seeds could germinate without ingestion by birds once the seeds had been manually extracted from the pulp. In the field, intact fruits did not germinate in the first spring, because the seed was still covered with pulp. The pulp of intact seeds decomposed during the first summer, and thus, the seeds had the potential to germinate during the second spring. In fact, most intact seeds do not germinate during the second spring either, since they lose their viability during the first summer. Thus, under natural conditions, most seeds of Sorbus commixta cannot germinate without bird ingestion. Received: 5 July 1997 / Accepted: 7 November 1997  相似文献   

4.
Summary   The Victorian Western (Basalt) Plains grassland is one of Australia's most threatened plant communities. Practitioners using seed for its restoration need to know whether seed can be sown fresh or whether it requires an after-ripening period. This study assessed the viability and germination of freshly harvested wild seed from 64 grassland species indigenous to the Basalt Plains of western Victoria. The seed was collected as part of a broader experiment that examined the potential of direct-sown complex seed mixes for the restoration of grassland communities. The germination of fresh seed at 25°C varied widely between species. Comparisons with tetrazolium viability tests for each species indicated varying levels of dormancy within the species pool. Germination separated into three broad responses at day 28. One-third of the species failed to germinate, one-third germinated at 1% to 50% and the remaining species germinated between 51% and 100%. Therefore, if the aim of a sowing was the rapid and synchronous establishment of most of the sown species, the use of fresh seed in restoration could be problematic. After 3 months of dry storage, eight species were re-tested for germination. Each of the selected species had shown high viability but low initial germination. Only two species significantly increased their total germination at 25°C. The annual species, Triptilodiscus pygmaeus , increased its total germination from 6% as fresh seed to 99% after dry storage. Testing the viability and germination capacity of freshly harvested seed from a large and diverse sample of native grassland species demonstrated that many of the species were unlikely to germinate rapidly or synchronously when sown in complex seed mixes soon after harvest. This finding has implications for the scheduling and management of restoration projects that rely on the use of such seed.  相似文献   

5.
Mimosa bimucronata is a pioneering tree that occurs predominantly in moist lowlands, floodplains and on margins of rivers and lakes in Latin America. The effect of submergence on seed germination in M. bimucronata was firstly studied. Patterns of water absorption by M. bimucronata seeds were investigated thereafter to assess the imbibition phases of scarified and unscarified seeds. The germination percentage was significantly higher in scarified than in unscarified seeds, and the velocity of seed germination also increased considerably in scarified seeds. Submergence duration did not significantly affect germination percentages of scarified and unscarified seeds. Therefore, seed viability after submersion suggests that M. bimucronata may display hydrochorous dispersal and also that seeds are able to germinate successfully in areas with frequent seasonal flooding. With respect to imbibition phases, phase II was very short or even absent for scarified and unscarified seeds; therefore, a plateau, where water absorption by seeds is established, was not observed. Finally, we verified that the passage from phase I to III was very tenuous and took a long time in seeds without scarification.  相似文献   

6.
RNA metabolism of Indian rice grass seeds was studied in relation to imbibition and germination. These seeds germinate only after scarification of the seed coats. The hard seed coats restrict germination but not water intake or changes in the quantity and quality of RNA formed during early hours of soaking. These changes differ markedly from those in scarified (H2SO4 treated) seeds which are able to germinate. Gibberellic acid hastens germination of scarified seeds and causes changes in the population of RNA transcribed.  相似文献   

7.
Short or long-term ex situ conservation is becoming increasingly important in conservation of plants in today’s changing environments. One of the important steps in ex situ conservation is the collection and storage of seeds and the consequent establishment of seed germination protocols. Cerastium dinaricum (Caryophyllaceae) is an endemic, high elevation and rare species of European conservation concern. Because of its severely fragmented distribution along the Dinaric Alps, the populations are likely to undergo further shrinkage in the future, which addresses the need of a long-term effective conservation management. From the potential ex situ population management perspective, we focused our study on germination ecology of C. dinaricum. The study revealed that temperature considerably affected the germination of seeds, which germinate better at 20 °C rather than 10 °C. A period of cold-wet stratification also significantly improved the final germination percentage with more pronounced increase at 20 °C, while addition of GA3 increased the final germination percentage by breaking the dormancy of non-stratified seeds. Mechanical scarification did not improve germination; on the contrary, it resulted in the lowest germination success. Seeds grown in complete darkness germinated significantly better compared to control when they were exposed to cold-wet stratification. Contrary to previous studies on some alpine species, which germinate better when exposed to light, dark treatment resulted in the highest germination percentages with 70 and 90% germination success after 4 and 8 weeks of stratification, respectively.  相似文献   

8.
Ligularia virgaurea is widely distributed in the alpine meadows of the eastern Qinghai-Tibet plateau. We studied the effects of temperature and seed storage length on seed germination in a laboratory experiment, the effects of seed mass and light intensity on seed emergence in a pot experiment, and the effect of meadow disturbance intensity on seed emergence in a field experiment. Our results showed that seeds of L. virgaurea germinated well under a wide range of temperatures. Germination percentage decreased with increased seed storage length. When seeds were stored for either 6 or 12 months the germination percentage increased with decreasing temperature. The emergence percentage of large seeds was higher than that of small seeds. Seedling survival of large seeds was greater than that of small seeds in 75% and 50% of natural irradiance. Large seeds of L. virgaurea were more successful colonizers in the alpine meadows. Seeds of L. virgaurea germinated in both disturbed meadows and non-disturbed meadows, but seed emergence and seedling establishment were higher in the disturbed meadows, that is, disturbance could facilitate the recruitment and establishment of L. virgaurea .  相似文献   

9.
  • Divergence in seed germination patterns among populations of the same species is important for understanding plant responses to environmental gradients and potential plant sensitivity to climate change. In order to test responses to flooding and decreasing water potentials, over 3 years we germinated and grew seeds from three habitats of Euterpe edulis Mart. occurring along an altitudinal gradient.
  • Seed germination and root growth were evaluated under different water availability treatments: control, flood, −0.4 MPa, −0.8 MPa, in the years 2012, 2013 and 2014, and in the final year of the experiment (2014) at −1.0 MPa and −1.5 MPa.
  • Seeds from the montane habitat did not germinate in the flooding treatment. Seed germination of all three habitats decreased in the −1.5 MPa treatment and the montane habitat had lowest germination in this treatment. Time required for half of the seeds to germinate increased up to −0.8 MPa. Seeds from montane habitats germinated more slowly in all treatments. The only difference in seed germination synchrony was an increase in the submontane population under the flooding treatment. However, synchrony decreased at the lowest water potentials. Roots of the montane population were more vigorous in most treatments, except at −0.8 MPa.
  • The unusual ability of these seeds to germinate at low water potentials might be related to early seed germination at the onset of the rainy season, which potentially decreases seed predation pressure. Seeds of the montane population were more sensitive to both types of water stress. A predicted increase in the frequency and intensity of extreme high rainfall or drought events may predispose early stages of this population to adverse factors that might negatively affect population viability with elevational in future climate change scenarios.
  相似文献   

10.
该文研究了野外条件下不同深度的沙埋对沙鞭(Psammochloa villosa)种子萌发和幼苗出土的影响,以及温室条件下种子大小对不同深度沙埋后的种子萌发和幼苗出土的影响。结果表明,沙埋深度显著影响沙鞭的种子萌发率、幼苗出土率和种子休眠率。沙子表面的种子不能萌发。2 cm的浅层沙埋时的种子萌发率和幼苗出土率最高,1 cm 沙埋的种子萌发率和幼苗出土率次之。沙埋深度超过2 cm之后,沙鞭的种子萌发率和幼苗出土率与沙埋深度呈负相关。2 cm的种子休眠率最低。从2 ~12 cm,种子休眠率随着沙埋深度的增加而增加。在幼苗能够出土的深度(1~6 cm),幼苗首次出土所需的时间随着沙埋深度的增加而延长。种子大小对沙鞭的种子萌发率没有显著影响。但是在深层沙埋(6 cm)时,与小种子相比,大种子产生的幼苗的出土率较高。从2~6 cm,大种子形成的幼苗的茎长度都较长。  相似文献   

11.
Common ragweed (Ambrosia artemisiifolia L.) was one of 19 herbaceous weedy species used by Beal in his buried viable seed experiment started in 1879. No seeds germinated during the first 35 years of the experiment when germination tests were performed in late spring, summer or early autumn. Germination did occur in seeds buried for 40 years when seeds were exhumed and tested for germination in early spring. Data obtained in more recent research provide the probable explanation for these results. Seeds of common ragweed that do not germinate in spring enter secondary dormancy by mid to late spring and will not germinate until dormancy is broken the following late autumn and winter. Thus, during the first 35 years of the experiment seeds were dormant when tested for germination, whereas seeds buried for 40 years were nondormant. Seeds buried 50 years or longer did not germinate when tested in spring, probably because they had lost viability and/or seeds germinated during burial and seedlings died.  相似文献   

12.
The seed dispersal mechanisms and regeneration of various forest ecosystems can benefit from the actions of carnivores via endozoochory. This study was aimed to evaluate the role of carnivores in endozoochory and diploendozoochory, as well as their effect on seed viability, scarification, and germination in two forest ecosystems: temperate and tropical dry forest. We collected carnivore scat in the Protected Natural Area of Sierra Fría in Aguascalientes, Mexico, for 2 years to determine the abundance and richness of seeds dispersed by each carnivore species, through scat analysis. We assessed seed viability through optical densitometry using X‐rays, analyzed seed scarification by measuring seed coat thickness using a scanning electron microscope, and evaluated seed germination in an experiment as the percentage of seeds germinated per carnivore disperser, plant species, and forest type. In the temperate forest, four plant species (but mainly Arctostaphylos pungens) were dispersed by four mammal species. The gray fox dispersed the highest average number of seeds per scat (66.8 seeds). Bobcat dispersed seeds through diploendozoochory, which was inferred from rabbit (Sylvilagus floridanus) hair detected in their scats. The tropical dry forest presented higher abundance of seeds and richness of dispersed plant species (four species) than in the temperate forest, and the coati dispersed the highest number of seeds (8,639 seeds). Endozoochory and diploendozoochory did not affect viability in thick‐testa seeds (1,480 µm) in temperate forest and thin‐testa seeds (281 µm) in tropical dry forest. Endozoochory improved the selective germination of seeds. Nine plant species were dispersed by endozoochory, but only one species (Juniperus sp.) by diploendozoochory. These results suggest that carnivores can perform an important ecological function by dispersing a great abundance of seeds, scarifying these seeds causing the formation of holes and cracks in the testas without affecting viability, and promoting the selective germination of seeds.  相似文献   

13.
The ability to germinate under a variety of environmental conditions is essential for plant species inhabiting a wide range of altitudes and latitudes. Phacelia secunda J. F. Gmel. (Hydrophyllaceae) is a perennial herb with wide latitudinal and altitudinal distributional ranges. In the central Chilean Andes (33 °S) P. secunda can be found from 1600 m sealevel up to the vegetation limit at 3400 m. It has been suggested that seeds from populations encountering long periods with snow cover and adverse winter conditions would require longer periods of cold stratification for germination than those from populations exposed to milder winters. Given that the snow-free period decreases with elevation, seeds from high elevation populations could require longer period of cold stratification to germinate. Moreover, it has been shown that seeds from arctic and higher elevations environments are adapted to germinate better under high temperature conditions. Germination response with increasing periods of cold stratification (0–6 mo.) and under two contrasting thermoperiods (20 °/1O °C; 10 °/5 °C; 12 h day/night), were studied for 4 populations of P. secunda located at 1600, 2100, 2900 and 3400 m a.s.l. Initiation of germination required increasingly longer periods of stratification with elevation, and proportionately fewer seeds germinated for any one stratification treatment at the higher elevations. Seeds from higher elevations germinated to a higher percentage under the high than the low temperature thermoperiods. These results illustrates a significant variation in germination characteristics over a spatially short environmental gradient.  相似文献   

14.

Premise

In 1879, Dr. William Beal buried 20 glass bottles filled with seeds and sand at a single site at Michigan State University. The goal of the experiment was to understand seed longevity in the soil, a topic of general importance in ecology, restoration, conservation, and agriculture, by periodically assaying germinability of these seeds over 100 years. The interval between germination assays has been extended and the experiment will now end after 221 years, in 2100.

Methods

We dug up the 16th bottle in April 2021 and attempted to germinate the 141-year-old seeds it contained. We grew germinants to maturity and identified these to species by vegetative and reproductive phenotypes. For the first time in the history of this experiment, genomic DNA was sequenced to confirm species identities.

Results

Twenty seeds germinated over the 244-day assay. Eight germinated in the first 11 days. All 20 belonged to the Verbascum genus: Nineteen were V. blattaria according to phenotype and ITS2 genotype; and one had a hybrid V. blattaria × V. thapsus phenotype and ITS2 genotype. In total, 20/50 (40%) of the original Verbascum seeds in the bottle germinated in year 141.

Conclusions

While most species in the Beal experiment lost all seed viability in the first 60 years, a high percentage of Verbascum seeds can still germinate after 141 years in the soil. Long-term experiments such as this one are rare and invaluable for studying seed viability in natural soil conditions.  相似文献   

15.
Variability in seed germination behaviour of Cistus ladanifer L. (rockrose), a Cistaceous species widely distributed in the Mediterranean Basin, was studied in a central Spanish population under controlled conditions. No correlation between seed moisture content and germination was found. Great variability in germination was found among seeds of the population studied, not only between seeds belonging to different mother plants, but also between those collected from different capsules on the same plant. In most cases, seeds preheated at 100 °C for 30 minutes showed a significant increase in germination. This germination behaviour is related to fire regimes as this plant is a typical shrubby element of the mediterranean shrublands. Percent germination did not vary significantly after several months of seed storage at room temperature. In the same way, no difference was found in final germination percentage of seeds stored under room temperature vs. seeds stored under cold conditions.  相似文献   

16.
In Anagyris foetida, the fruits are disseminated by fall under gravity. No dispersing agent is as yet known, so that the fruits are located near the mother plant. The species presents an important seed bank that differs between the two populations studied, probably due to their different production of seeds/individual and to the livestock pressure. The germination of control seeds was found to be null or very low, with no improvement following exposure to high temperatures, but reaching high values following scarification in all the populations studied. This indicates that the failure in germination must be attributed to the hardness of the testa, with the seeds presenting physical dormancy. Also, the browsing of sheep on ripe fruit increases germination to 48% due to mechanical scarification, with this being the only positive effect those animals have on these plants. There were differences in germination after scarification between populations and years which could have been due to intrinsic characteristics.  相似文献   

17.
短命植物独行菜种子萌发过程对低温的耐受特性   总被引:2,自引:0,他引:2  
以独行菜(Lepidium apetalum)为材料,研究了其种子在萌发过程中耐受低温的特性,并对耐受低温的机制作了初步的探讨。结果表明:1.萌发至I、II、III期的独行菜种子经过冷诱导处理后,对零下低温-5℃、-10℃胁迫具有较强的耐受性,这种耐受性随萌发发展相对有所降低。2.独行菜种子萌发过程中胚根生长速度明显受到低温抑制,但也仍然能够生长。3.适当时间的低温层积能使独行菜萌发势显著提高,对终萌发率影响不大;过长时间的低温层积会使独行菜种子萌发势和最终萌发率降低。4.独行菜种子在4℃条件下不能萌发,但4℃层积2d的种子经25℃处理6h以上后,可耐受4℃低温而萌发,且萌发率随25℃处理时间增加而升高。如果25℃处理时间少于5h则不能在4℃低温下萌发。经4℃层积10d、再经25℃萌发处理1h的独行菜种子就能在4℃低温下萌发。综合分析认为独行菜种子不能耐受4℃低温萌发,原因可能是在露白前存在一个关键的生理阶段,在4℃胁迫逆境中不能越过这个阶段,该阶段之前与之后的萌发过程都能耐受4℃低温,因此对低温胁迫有良好的耐受性。这为探索早春短命植物耐受低温萌发的机制提供了新的思路。  相似文献   

18.
Methods of estimating seed banks with reference to long-term seed burial   总被引:4,自引:0,他引:4  
We compared two standard seed-bank estimation techniques using buried seed populations that had been covered to depths of >1 m by volcanic deposits for 20 years. Some seeds were germinated in a greenhouse (germination method [GM]), and other seeds were extracted by flotation using 50% K2CO3 solution (floatation method [FM]). In total, FM could detect more species and seeds in the soils than GM. However, many species that were extracted by FM did not germinate by GM and smaller seeds were extracted to a lesser extent by FM. FM and GM have distinct advantages and disadvantages. We concluded that the application of a single method should be avoided in estimating seed banks, in particular for long-lived seed banks, because the seeds cannot be readily germinated and are structurally weak.  相似文献   

19.
Carapa guianensis Aubl. (Meliaceae), a hard wood tree from the Brazilian Amazon, has large recalcitrant seeds that can germinate and establish in both flood-free (terra-firme) and flood-prone (várzea) forests. These seeds, although large, can float. This study was designed to experimentally examine seed longevity under floating conditions ex-situ and its effects on subsequent germination and seedling growth. Many seeds germinated while floating, and radicle protrusion occurred from 3 to 42 d after the start of the floating treatment (tap water, room temperature 20–30 °C). Shoots of newly germinated floating seedlings may elongate up to 37.0 cm in 20 d without loss of viability. Epicotyl and first leaf emergence were delayed by floating. Seeds that did not germinate while floating were then placed on vermiculite and watered daily, where many seeds resumed germination. Germination during and after floating was affected by the length of the floating treatment: 88% germinated after 1 mo, 82% germinated after 2 mo and 70% germinated after 2.5 mo. These results indicate that Carapa guianensis has physiological variation regarding dormancy in response to seed floatation. The fact that floatation induces dormancy in recalcitrant seeds of this economically important species can be relevant to initiatives of ex situ storage of seeds.  相似文献   

20.
In 1879 Dr. W. J. Beal selected seeds of 23 different species of locally common plants, mixed 50 seeds of each species with moist sand in unstoppered one-pint bottles, and buried the bottles in a sandy knoll to be unearthed and the viability of the seeds tested periodically. The year 1970 marked the ninetieth year the seed had been buried, and the thirteenth bottle was recovered to test for seed viability. Of the three species which had germinated in the 1960 test (curly dock, Rumex crispus; evening primrose, Oenothera biennis; and moth mullein, Verbascum blattaria), only V. blattaria had viable seed with 20% germination. No other species germinated. All ten seedlings of V. blattaria were grown to maturity, and seeds were then harvested to study the possible deviations from normality and the requirements for seed germination. All seedlings emerging from the first progeny seed appeared normal. The most prominent requirement for germination was light, and this is a possible explanation of why the seeds had remained viable but dormant for so long a period. One-third of the freshly harvested seed germinated in darkness and, furthermore, redrying of dark-moistened seed in the absence of light induced additional germination. Germination of dark-moistened seed was not completely restored when the still moist seeds were subsequently exposed to light. However, when dark-moistened seeds were dried and then remoistened in the light, germination was about 95 %. About 5 % of the seed did not germinate under the conditions used. We find that 5 % of the population of V. blattaria seeds are dormant for unknown reasons, that 30 % will germinate if supplied only with moisture, and that 65 % are inhibited and require light and moisture simultaneously for germination. Supplying this 65 % of the population with moisture in darkness results in the development of a second type of inhibition which is no longer light reversible. It appears that the simultaneous requirement for light and moisture is an important factor in permitting V. blattaria seeds to remain dormant during prolonged burial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号