共查询到20条相似文献,搜索用时 0 毫秒
1.
Cdk5 phosphorylates p53 and regulates its activity 总被引:2,自引:0,他引:2
2.
3.
Sahlgren CM Mikhailov A Vaittinen S Pallari HM Kalimo H Pant HC Eriksson JE 《Molecular and cellular biology》2003,23(14):5090-5106
The intermediate filament protein nestin is characterized by its specific expression during the development of neuronal and myogenic tissues. We identify nestin as a novel in vivo target for cdk5 and p35 kinase, a critical signaling determinant in development. Two cdk5-specific phosphorylation sites on nestin, Thr-1495 and Thr-316, were established, the latter of which was used as a marker for cdk5-specific phosphorylation in vivo. Ectopic expression of cdk5 and p35 in central nervous system progenitor cells and in myogenic precursor cells induced elevated phosphorylation and reorganization of nestin. The kinetics of nestin expression corresponded to elevated expression and activation of cdk5 during differentiation of myoblast cell cultures and during regeneration of skeletal muscle. In the myoblasts, a disassembly-linked phosphorylation of Thr-316 indicated active phosphorylation of nestin by cdk5. Moreover, cdk5 occurred in physical association with nestin. Inhibition of cdk5 activity-either by transfection with dominant-negative cdk5 or by using a specific cdk5 inhibitor-blocked myoblast differentiation and phosphorylation of nestin at Thr-316, and this inhibition markedly disturbed the organization of nestin. Interestingly, the interaction between p35, the cdk5 activator, and nestin appeared to be regulated by cdk5. In differentiating myoblasts, p35 was not complexed with nestin phosphorylated at Thr-316, and inhibition of cdk5 activity during differentiation induced a marked association of p35 with nestin. These results demonstrate that there is a continuous turnover of cdk5 and p35 activity on a scaffold formed by nestin. This association is likely to affect the organization and operation of both cdk5 and nestin during development. 相似文献
4.
Cdk5/p35 phosphorylates lemur tyrosine kinase-2 to regulate protein phosphatase-1C phosphorylation and activity 总被引:1,自引:0,他引:1
Cyclin-dependent kinase-5 (cdk5)/p35 and protein phosphatase-1 (PP1) are two major enzymes that control a variety of physiological processes within the nervous system including neuronal differentiation, synaptic plasticity and axonal transport. Defective cdk5/p35 and PP1 function are also implicated in several major human neurodegenerative diseases. Cdk5/p35 and the catalytic subunit of PP1 (PP1C) both bind to the brain-enriched, serine-threonine kinase lemur tyrosine kinase-2 (LMTK2). Moreover, LMTK2 phosphorylates PP1C on threonine-320 (PP1Cthr32?) to inhibit its activity. Here, we demonstrate that LMTK2 is phosphorylated on serine-1418 (LMTK2ser1?1?) by cdk5/p35 and present evidence that this regulates its ability to phosphorylate PP1Cthr32?. We thus describe a new signalling pathway within the nervous system that links cdk5/p35 with PP1C and which has implications for a number of neuronal functions and neuronal dysfunction. 相似文献
5.
Cdk5/p35 expression in the mouse ovary 总被引:1,自引:0,他引:1
Lee KY Rosales JL Lee BC Chung SH Fukui Y Lee NS Lee KY Jeong YG 《Molecules and cells》2004,17(1):17-22
Cyclin-dependent kinase 5 (Cdk5) is primarily associated with brain development but it is also implicated in lens and muscle differentiation. We found that Cdk5 is also expressed in mouse ovary, and explored the possibility that it plays a role in that tissue. We show by Western blotting and immunohistochemistry that the known Cdk5 activator, p35, is also present in the mouse ovary. Cdk5 and p35 were detected in oocytes at all stages of the follicle. While Cdk5 was present in the cytoplasm and nucleus of the oocyte, p35 was observed only in the cytoplasm. Both proteins were detected in the cytoplasm of luteinized cells in the corpus luteum. Immunoprecipitation and histone H1 kinase assays revealed that they form an ovarian complex with considerable kinase activity. Phosphorylation assays showed that several ovarian proteins are substrates for Cdk5/p35 in vitro. Together our findings suggest that p35-associated Cdk5 activity plays an important role in the ovary, where it may regulate cell differentiation and apoptosis as it does in the brain. 相似文献
6.
Dianbo Qu Qing Li Hui-Ying Lim Nam Sang Cheung Rong Li Jerry H Wang Robert Z Qi 《The Journal of biological chemistry》2002,277(9):7324-7332
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a). 相似文献
7.
Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5 总被引:1,自引:0,他引:1
The phosphorylation status of amyloid precursor protein (APP) at Thr668 is suggested to play a critical role in the proteolytic cleavage of APP, which generates either soluble APP(beta) (sAPP(beta)) and beta-amyloid peptide (Abeta), the major component of senile plaques in patient brains inflicted with Alzheimer's disease (AD), or soluble APP(alpha) (sAPP(alpha)) and a peptide smaller than Abeta. One of the protein kinases known to phosphorylate APP(Thr668) is cyclin-dependent kinase 5 (Cdk5). Cdk5 is activated by the association with its regulatory partner p35 or its truncated form, p25, which is elevated in AD brains. The comparative effects of p35 and p25 on APP(Thr668) phosphorylation and APP processing, however, have not been reported. In this study, we investigated APP(Thr668) phosphorylation and APP processing mediated by p35/Cdk5 and p25/Cdk5 in the human neuroblastoma cell line SH-SY5Y. Transient overexpression of p35 and p25 elicited distinct patterns of APP(Thr668) phosphorylation, specifically, p35 increasing the phosphorylation of both mature and immature APP, whereas p25 primarily elevated the phosphorylation of immature APP. Despite these differential effects on APP phosphorylation, both p35 and p25 overexpression enhanced the secretion of Abeta, sAPP(beta), as well as sAPP(alpha). These results confirm the involvement of Cdk5 in APP processing, and suggest that p35- and p25-mediated Cdk5 activities lead to discrete APP phosphorylation. 相似文献
8.
Kawauchi T Chihama K Nishimura YV Nabeshima Y Hoshino M 《Biochemical and biophysical research communications》2005,331(1):50-55
Mode I phosphorylated MAP1B is observed in developing and pathogenic brains. Although Cdk5 has been believed to phosphorylate MAP1B in the developing cerebral cortex, we show that a Cdk5 inhibitor does not suppress mode I phosphorylation of MAP1B in primary and slice cultures, while a JNK inhibitor does. Coincidently, an increase in phosphorylated MAP1B was not observed in COS7 cells when Cdk5 was cotransfected with p35, but this did occur with p25 which is specifically produced in pathogenic brains. Our primary culture studies showed an involvement of Cdk5 in regulating microtubule dynamics without affecting MAP1B phosphorylation status. The importance of regulating microtubule dynamics in neuronal migration was also demonstrated by in utero electroporation experiments. These findings suggest that mode I phosphorylation of MAP1B is facilitated by JNK but not Cdk5/p35 in the developing cerebral cortex and by Cdk5/p25 in pathogenic brains, contributing to various biological events. 相似文献
9.
10.
Cheng K Li Z Fu WY Wang JH Fu AK Ip NY 《The Journal of biological chemistry》2002,277(35):31988-31993
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that plays important roles during central nervous system development. Cdk5 kinase activity depends on its regulatory partners, p35 or p39, which are prominently expressed in the central nervous system. We have previously demonstrated the involvement of Cdk5 in the regulation of acetylcholine receptor expression at the neuromuscular junction, suggesting a novel functional role of Cdk5 at the synapse. Here we report the identification of Pctaire1, a member of the Cdk-related kinase family, as a p35-interacting protein in muscle. Binding of Pctaire1 to p35 can be demonstrated by in vitro binding assay and co-immunoprecipitation experiments. Pctaire1 is associated with p35 in cultured myotubes and skeletal muscle, and is concentrated at the neuromuscular junction. Furthermore, Pctaire1 can be phosphorylated by the Cdk5/p25 complex, and serine 95 is the major phosphorylation site. In brain and muscle of Cdk5 null mice, Pctaire1 activity is significantly reduced. Moreover, Pctaire1 activity is increased following preincubation with brain extracts and phosphorylation by the Cdk5/p25 complex. Taken together, our findings demonstrate that Pctaire1 interacts with p35, both in vitro and in vivo, and that phosphorylation of Pctaire1 by Cdk5 enhances its kinase activity. 相似文献
11.
Cdk5-mediated Acn/Acinus phosphorylation regulates basal autophagy independently of metabolic stress
Nilay Nandi 《Autophagy》2018,14(7):1271-1272
In neurons, autophagy counteracts consequences of aging. It is therefore of interest how basal rates of macroautophagy/autophagy can be controlled independently of metabolic stress. We recently investigated the regulation of basal, starvation-independent autophagy by Acn/Acinus, a multifunctional nuclear protein with proposed roles in apoptosis, alternative RNA splicing, and basal autophagy. We found that Acn is stabilized by phosphorylation of the conserved serine 437. The phosphomimetic AcnS437D mutation causes no overt developmental phenotypes, but significantly elevates levels of basal autophagy and extends life spans. An RNAi screen identified Cdk5 as a kinase targeting S437, a role confirmed by gain- and loss-of-function mutants of Cdk5 or its obligatory cofactor Cdk5r1/p35. Flies lacking Cdk5 function display reduced basal autophagy and a shortened life span. Both of these phenotypes are suppressed by the phosphomimetic AcnS437D mutation, indicating that phosphorylating serine 437 of Acn, and thereby maintaining basal levels of autophagy, is critical for Cdk5's function in maintaining neuronal health. 相似文献
12.
Xiaojuan He Masato Ishizeki Naoki Mita Seitaro Wada Yoshifumi Araki Hiroo Ogura Manabu Abe Maya Yamazaki Kenji Sakimura Katsuhiko Mikoshiba Takafumi Inoue Toshio Ohshima 《Journal of neurochemistry》2014,131(1):53-64
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin‐dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35?/? (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell‐specific conditional Cdk5/p35 knockout (L7‐p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota‐rod test, and performed electrophysiological recordings to assess long‐term synaptic plasticity. Our analyses showed that Purkinje cell‐specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long‐term synaptic plasticity was observed at the parallel fiber‐Purkinje cell synapse in L7‐p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long‐term synaptic plasticity.
13.
Cdk5/p35激酶与肌动蛋白细胞骨架结合关系的鉴定 总被引:1,自引:0,他引:1
Cdk5,一种多功能的丝氨酸/苏氨酸蛋白激酶,其活性只有通过结合其神经特异性调节亚基才能被激活.p35是Cdk5的两个主要调节亚基之一.尽管Cdk5/p35激酶可以调控神经细胞中肌动蛋白细胞骨架的动态变化,但直到目前为止Cdk5/p35激酶与肌动蛋白细胞骨架的结合关系仍不是很清楚.现利用几种不同的方法对两者的结合关系进行了初步鉴定.目前的试验结果表明在鼠脑组织中肌动蛋白细胞骨架是Cdk5/p35超大蛋白复合体的一个组分,p35可以直接结合纤维状肌动蛋白,这说明在鼠脑组织或神经细胞中Cdk5很有可能是通过p35结合到肌动蛋白细胞骨架上并进一步调控肌动蛋白细胞骨架的动态活动的. 相似文献
14.
15.
Normal Cdk5 activity, conferred mainly by association with its primary activator p35, is critical for normal function of the cell and must be tightly regulated. During neurotoxicity, p35 is cleaved to form p25, which becomes a potent and mislocalized hyperactivator of Cdk5, resulting in a deregulation of Cdk5 activity. p25 levels have been found to be elevated in Alzheimer's disease (AD) brain and overexpression of p25 in a transgenic mouse results in the formation of phosphorylated tau, neurofibrillary tangles and cognitive deficits that are pathological hallmarks of AD. p25/Cdk5 also hyperphosphorylates neurofilament proteins that constitute pathological hallmarks found in Parkinson's disease and amyotrophic lateral sclerosis. The selective targeting of p25/Cdk5 activity without affecting p35/Cdk5 activity has been unsuccessful. In this review we detail our recent studies of selective p25/Cdk5 inhibition without affecting p35/Cdk5 or mitotic Cdk activities. We found that a further truncation of p25 to yield a Cdk5 inhibitory peptide (CIP) can specifically inhibit p25/Cdk5 activity in transfected HEK cells and primary cortical neurons. CIP was able to reduce tau hyperphosphorylation and neuronal death induced caused by p25/Cdk5 and further studies with CIP may develop a specific Cdk5 inhibition strategy in the treatment of neurodegeneration. 相似文献
16.
Sato K Minegishi S Takano J Plattner F Saito T Asada A Kawahara H Iwata N Saido TC Hisanaga S 《Journal of neurochemistry》2011,117(3):504-515
Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase that is activated by binding to its regulatory subunit, p35. The calpain-mediated cleavage of p35 to p25 and the resulting aberrant activity and neurotoxicity of Cdk5 have been implicated in neurological disorders, such as Alzheimer's disease. To gain further insight into the molecular mechanisms underlying the pathological function of Cdk5, we investigated the role of the calpain inhibitor protein calpastatin (CAST), in controlling the aberrant production of p25. For this purpose, brain tissue from wild-type, CAST-over-expressing (transgenic), and CAST knockout mice were analyzed. Cleavage of p35 to p25 was increased in extracts from CAST knockout mice, compared with wild-type. Conversely, generation of p25 was not detected in brain lysates from CAST-over-expressing mice. CAST expression was 5-fold higher in mouse cerebellum than cerebral cortex. Accordingly, p25 production was lower in the cerebellum than the cerebral cortex. Furthermore, the Ca(2+) -dependent degradation of p35 by proteasome was evident when calpain was inhibited. Taken together, these results suggest that CAST is a crucial regulator of calpain activity, the production of p25, and, hence, the deregulation of Cdk5. Therefore, impairment of CAST expression and its associated mechanisms may contribute to the pathogenesis of neurodegenerative disorders. 相似文献
17.
Hou Z Li Q He L Lim HY Fu X Cheung NS Qi DX Qi RZ 《The Journal of biological chemistry》2007,282(26):18666-18670
Cdk5 and its neuronal activator p35 play an important role in neuronal migration and proper development of the brain cortex. We show that p35 binds directly to alpha/beta-tubulin and microtubules. Microtubule polymers but not the alpha/beta-tubulin heterodimer block p35 interaction with Cdk5 and therefore inhibit Cdk5-p35 activity. p25, a neurotoxin-induced and truncated form of p35, does not have tubulin and microtubule binding activities, and Cdk5-p25 is inert to the inhibitory effect of microtubules. p35 displays strong activity in promoting microtubule assembly and inducing formation of microtubule bundles. Furthermore, microtubules stabilized by p35 are resistant to cold-induced disassembly. In cultured cortical neurons, a significant proportion of p35 localizes to microtubules. When microtubules were isolated from rat brain extracts, p35 co-assembled with microtubules, including cold-stable microtubules. Together, these findings suggest that p35 is a microtubule-associated protein that modulates microtubule dynamics. Also, microtubules play an important role in the control of Cdk5 activation. 相似文献
18.
Elias Utreras Anita Terse Jason Keller Michael J Iadarola Ashok B Kulkarni 《Molecular pain》2011,7(1):49
Background
We have previously reported that cyclin-dependent kinase 5 (Cdk5) participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α) induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity.Results
Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity.Conclusions
We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.19.
The intermediate filament protein, nestin, has been implicated as an organizer of survival-determining signaling molecules. When nestin expression was related to the sensitivity of neural progenitor cells to oxidant-induced apoptosis, nestin displayed a distinct cytoprotective effect. Oxidative stress in neuronal precursor cells led to downregulation of nestin with subsequent activation of cyclin-dependent kinase 5 (Cdk5), a crucial kinase in the nervous system. Nestin downregulation was a prerequisite for the Cdk5-dependent apoptosis, as overexpression of nestin efficiently inhibited induction of apoptosis, whereas depletion of nestin by RNA interference had a sensitizing effect. When the underlying link between nestin and Cdk5 was analyzed, we observed that nestin serves as a scaffold for Cdk5, with binding restricted to a specific region following the alpha-helical domain of nestin, and that the presence and organization of nestin regulated the sequestration and activity of Cdk5, as well as the ubiquitylation and turnover of its regulator, p35. Our data imply that nestin is a survival determinant whose action is based upon a novel mode of Cdk5 regulation, affecting the targeting, activity, and turnover of the Cdk5/p35 signaling complex. 相似文献