首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of phosphoinositide 3-kinase gamma by Ras   总被引:4,自引:0,他引:4  
BACKGROUND: Type I phosphoinositide 3-kinases are responsible for the hormone-sensitive synthesis of the lipid messenger phosphatidylinositol(3,4,5)-trisphosphate. Type IA and IB subfamily members contain a Ras binding domain and are stimulated by activated Ras proteins both in vivo and in vitro. The mechanism of Ras activation of type I PI3Ks is unknown, in part because no robust in vitro assay of this event has been established and characterized. Other Ras effectors, such as Raf and phosphoinositide-phospholipase Cepsilon, have been shown to be translocated into the plasma membrane, leading to their activation.RESULTS: We show that posttranslationally lipid-modified, activated N-, H-, K-, and R-Ras proteins can potently and substantially activate PI3Kgamma when using a stripped neutrophil membrane fraction as a source of phospholipid substrate. We have found GTPgammaS-loaded Ras can significantly (6- to 8-fold) activate PI3Kgamma when using artificial phospholipid vesicles containing their substrate, and this effect is a result of both a decrease in apparent Km for phosphatidylinositol(4,5)-bisphosphate and an increase in the apparent Vmax. However, neither in vivo nor in the two in vitro assays of Ras activation of PI3Kgamma could we detect any evidence of a Ras-dependent translocation of PI3Kgamma to its source of phospholipid substrate.CONCLUSIONS: Our data suggest that Ras activate PI3Kgamma at the level of the membrane, by allosteric modulation and/or reorientation of the PI3Kgamma, implying that Ras can activate PI3Kgamma without its membrane translocation. This view is supported by structural work that has suggested binding of Ras to PI3Kgamma results in a change in the structure of the catalytic pocket.  相似文献   

2.
3.
mAb are being widely used to probe the function of cell-surface proteins. The cell stimulation that may be produced is often dependent on mAb interaction with both the target Ag and FcR. However, it remains unclear whether these interactions take place on the same cell or between adjacent cells and whether the FcR plays an anchoring or signaling role. Using the model of platelet activation, we demonstrate that two different Fc-dependent mAb, LeoA1 and ALB6, both activate the cell by forming intercellular links between Ag on one cell and FcR on the opposing platelet. We also show that the mAb differ with respect to the relative roles of target Ag vs FcR in provision of the stimulation signal. Thus Fc gamma RII played a mainly anchorage role in LeoA1 stimulation, whereas its role in ALB6 stimulation was mainly signaling. Therefore the precise contribution of each of these roles to the overall effect of a stimulatory antibody should be determined before the antibody is used as a specific functional probe.  相似文献   

4.
Chemokines such as the monocyte chemol attractant protein-1 (MCP-1) convert monocyte rolling to firm arrest under physiological flow conditions via integrin activation and simultaneously activate phosphoinositide 3-kinase (PI3K). Here we used adenoviral gene transfer and biochemical inhibitors to manipulate PI3K-dependent pathways in human monocytes. In in vitro lipid kinase assays from purified human monocytes, we showed that MCP-1 activates the "classical" PI3Kalpha pathway and not PI3Kgamma, a PI3K isoform thought to be activated only by the betagamma complex of heterotrimeric G proteins. The activity of PI3Kalpha in purified human monocytes was evident within 30 s. MCP-1-induced monocyte arrest was significantly inhibited both by wortmannin (n = 4; p < 0.01) and LY294002 (n = 4; p < 0.01) with restoration of the rolling phenotype (p < 0.05 for both inhibitors, compared with rolling of control monocytes after MCP-1 treatment). To test the hypothesis that activation of PI3K is sufficient to induce monocyte adhesion, we transduced the monocytic THP-1 cell line with a recombinant adenovirus (Ad) carrying a constitutively active mutant of PI3K (Ad.BD110). We examined the ability of these cells to adhere to human vascular endothelium (HUVEC) transduced with adenoviruses carrying E-selectin, intercellular adhesion molecule-1 (ICAM-1), and VCAM-1. Under flow conditions, ICAM-1- and VCAM-1-dependent firm adhesion of Ad.BD110-transduced THP-1 cells was enhanced compared with THP-1 cells infected with control Ad (n = 4; p < 0.01 for both). Adhesion augmented by constitutive PI3K activation was entirely abrogated by pretreatment with wortmannin (n = 3; p < 0.01). In contrast, a constitutively active Akt construct had no effect on THP-1 adhesion (n = 3; p = NS). We conclude that PI3K activation is necessary and sufficient to enhance monocytic adhesion under physiological flow conditions. BD110-expressing THP-1 cells should provide a useful tool for identifying the signaling pathways downstream of PI3K that are necessary for monocyte recruitment relevant to a variety of human vascular pathologies.  相似文献   

5.
The correct functioning of Ras proteins requires post-translational modification of the GTP hydrolases (GTPases). These modifications provide hydrophobic moieties that lead to the attachment of Ras to the inner side of the plasma membrane. In this study we investigated the role of Ras processing in the interaction with various putative Ras-effector proteins. We describe a specific, GTP-independent interaction between post-translationally modified Ha- and Ki-Ras4B and the G-protein responsive phosphoinositide 3-kinase p110gamma. Our data demonstrate that post-translational processing increases markedly the binding of Ras to p110gamma in vitro and in Sf9 cells, whereas the interaction with p110alpha is unaffected under the same conditions. Using in vitro farnesylated Ras, we show that farnesylation of Ras is sufficient to produce this effect. The complex of p110gamma and farnesylated RasGTP exhibits a reduced dissociation rate leading to the efficient shielding of the GTPase from GTPase activating protein (GAP) action. Moreover, Ras processing affects the dissociation rate of the RasGTP complex with the Ras binding domain (RBD) of Raf-1, indicating that processing induces alterations in the conformation of RasGTP. The results suggest a direct interaction between a moiety present only on fully processed or farnesylated Ras and the putative target protein p110gamma.  相似文献   

6.
Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response.  相似文献   

7.
Lee HY  Bae GU  Jung ID  Lee JS  Kim YK  Noh SH  Stracke ML  Park CG  Lee HW  Han JW 《FEBS letters》2002,515(1-3):137-140
Autotaxin (ATX), an exo-nucleotide pyrophosphatase and phosphodiesterase, stimulates tumor cell motility at sub-nanomolar levels and augments invasiveness and angiogenesis. We investigated the role of G protein-coupled phosphoinositide 3-kinase gamma (PI3Kgamma) in ATX-mediated tumor cell motility stimulation. Pretreatment of human melanoma cell line A2058 with wortmannin or LY294002 inhibited ATX-induced motility. ATX increased the PI3K activity in p110gamma, but not p85, immunoprecipitates. This effect was abrogated by PI3K inhibitors or inhibited by pertussis toxin. Furthermore, stimulation of tumor cell motility by ATX was inhibited by catalytically inactive form of PI3Kgamma, strongly indicating the crucial role of PI3Kgamma for ATX-mediated motility in human melanoma cells  相似文献   

8.
9.
G protein sensitive phosphoinositide 3-kinase gamma (PI3Kgamma) has been characterised as a pleiotropic signalling protein expressing lipid kinase and protein kinase activities. Whereas the regulation of the lipid kinase activity has been investigated in detail, the regulatory features of PI3Kgamma protein kinase activity are unknown. Here we report that Gbetagamma subunits of heterotrimeric G proteins induce a biphasic response of PI3Kgamma autophosphorylation in vitro, which contrasts the regulatory effects of the G proteins on PI3Kgamma lipid kinase activity. In addition to autophosphorylation PI3Kgamma is able to catalyse transphosphorylation of the adapter protein p101 and the protein kinase MEK-1. In the presence of the p101, Gbetagamma affects PI3Kgamma protein kinase activities in a complex manner. In summary, the differential regulatory effects of heterotrimeric G proteins on PI3Kgamma lipid and protein kinase activities in vitro reflect the functional diversity of the enzyme observed in vivo.  相似文献   

10.
Receptor-regulated class I phosphoinositide 3-kinases (PI3K) phosphorylate the membrane lipid phosphatidylinositol (PtdIns)-4,5-P2 to PtdIns-3,4,5-P3. This, in turn, recruits and activates cytosolic effectors with PtdIns-3,4,5-P3-binding pleckstrin homology (PH) domains, thereby controlling important cellular functions such as proliferation, survival, or chemotaxis. The class IB p110 gamma/p101 PI3K gamma is activated by G beta gamma on stimulation of G protein-coupled receptors. It is currently unknown whether in living cells G beta gamma acts as a membrane anchor or an allosteric activator of PI3K gamma, and which role its noncatalytic p101 subunit plays in its activation by G beta gamma. Using GFP-tagged PI3K gamma subunits expressed in HEK cells, we show that G beta gamma recruits the enzyme from the cytosol to the membrane by interaction with its p101 subunit. Accordingly, p101 was found to be required for G protein-mediated activation of PI3K gamma in living cells, as assessed by use of GFP-tagged PtdIns-3,4,5-P3-binding PH domains. Furthermore, membrane-targeted p110 gamma displayed basal enzymatic activity, but was further stimulated by G beta gamma, even in the absence of p101. Therefore, we conclude that in vivo, G beta gamma activates PI3K gamma by a mechanism assigning specific roles for both PI3K gamma subunits, i.e., membrane recruitment is mediated via the noncatalytic p101 subunit, and direct stimulation of G beta gamma with p110 gamma contributes to activation of PI3K gamma.  相似文献   

11.
Phosphoinositide 3-Kinase (PI3K) gamma is a lipid kinase that is regulated by G-protein-coupled receptors. It plays a crucial role in inflammatory and allergic processes. Activation of PI3Kgamma is primarily mediated by Gbetagamma subunits. The regulatory p101 subunit of PI3Kgamma binds to Gbetagamma and, thereby, recruits the catalytic p110gamma subunit to the plasma membrane. Despite its crucial role in the activation of PI3Kgamma, the structural organization of p101 is still largely elusive. Employing fluorescence resonance energy transfer measurements, coimmunoprecipitation and colocalization studies with p101 deletion mutants, we show here that distinct regions within the p101 primary structure are responsible for interaction with p110gamma and Gbetagamma. The p110gamma binding site is confined to the N terminus, whereas binding to Gbetagamma is mediated by a C-terminal domain of p101. These domains appear to be highly conserved among various species ranging from Xenopus to men. In addition to establishing a domain structure for p101, our results point to the existence of a previously unknown, p101-related regulatory subunit for PI3Kgamma.  相似文献   

12.
Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets for PtdIns(3,4)P(2) have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P(2). A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P(2) selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain.  相似文献   

13.
14.
In macrophages, chemotactic stimuli cause the activation of Rac and PAK, but little is known about the signaling pathways involved and their role in chemotactic gradient sensing. Herein, we report that in macrophages, the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 activates the small GTPase Rac and its downstream target PAK2 within seconds. This response depends on Gi activation and largely on the subsequent triggering of phosphoinositide 3-kinase gamma (PI3Kgamma) and Rac. Retroviral transduction of tagged Rac1 and -2 indicates that RANTES/CCL5-mediated activation of PI3Kgamma triggers Rac1 but not Rac2. In agreement, silencing of Rac1 by shRNA blocks PAK2 activity and inhibits RANTES/CCL5-induced macrophage polarization and directional migration. On the other hand, the tyrosine kinase receptor agonist CSF-1 activates PAK2 independently of PI3Kgamma and Rac. Our results thus demonstrate a chemokine-specific signaling pathway in which Gi and PI3Kgamma coordinate to drive Rac1 and PAK2 activation that eventually controls the chemotactic response.  相似文献   

15.
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.  相似文献   

16.
Ras activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. We find that PI3Kgamma is strongly and directly activated by H-Ras G12V in vivo or by GTPgammaS-loaded H-Ras in vitro. We have determined a crystal structure of a PI3Kgamma/Ras.GMPPNP complex. A critical loop in the Ras binding domain positions Ras so that it uses its switch I and switch II regions to bind PI3Kgamma. Mutagenesis shows that interactions with both regions are essential for binding PI3Kgamma. Ras also forms a direct contact with the PI3Kgamma catalytic domain. These unique Ras/PI3Kgamma interactions are likely to be shared by PI3Kalpha. The complex with Ras shows a change in the PI3K conformation that may represent an allosteric component of Ras activation.  相似文献   

17.
The death of serum-deprived undifferentiated PC12 cells shows both autophagic and apoptotic features. Since it is still controversial whether the autophagy is instrumental in the cell death or a mere epiphenomenon, we tested the effects of inhibiting the autophagy by a variety of phosphoinositide 3-kinase inhibitors, and provided evidence that the autophagy, or a related trafficking event, is indeed instrumental in the cell death. Furthermore, by comparing the effects of PI3-K inhibition and caspase-inhibition on autophagic and apoptotic cellular events, we showed that in this case the autophagic and apoptotic mechanisms mediate cell death by parallel pathways and do not act in series.Financial support: grants 31-50598.97 and 31-61736.00 from the Swiss National Science Foundation  相似文献   

18.
Human tumours emerge as the result of multiple genetic and epigenetic aberrations that allow the proto-cancer cell to escape normal social control. Many signal transduction pathways become constitutively active during this process, and one whose importance is increasingly being appreciated involves phosphoinositide 3-kinase (PI3-kinase). This pathway normally regulates important cell decisions such as growth, division, survival and migration, and when deregulated it can confer malignant potential to the ensuing tumour. However, constitutive activation of the PI3-kinase pathway might provide attractive therapeutic targets for the design of small-molecule inhibitors. This review discusses events upstream and downstream of PI3-kinase activity in the PI3-kinase signalling pathway, how PI3-kinase is deregulated in human tumourigenesis, and how this is being targeted clinically.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号