首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa 118) is bonded to cysteine 4 (aa 127). Thus, the biochemical analysis of gD-2 agrees with the genetic analysis of gD-1. A similar disulfide bond arrangement is postulated to exist in other gD homologs.  相似文献   

2.
Lopper M  Compton T 《Journal of virology》2002,76(12):6073-6082
Glycoprotein B (gB) is the most highly conserved of the envelope glycoproteins of human herpesviruses. The gB protein of human cytomegalovirus (CMV) serves multiple roles in the life cycle of the virus. To investigate structural properties of gB that give rise to its function, we sought to determine the disulfide bond arrangement of gB. To this end, a recombinant form of gB (gB-S) comprising the entire ectodomain of the glycoprotein (amino acids 1 to 750) was constructed and expressed in insect cells. Proteolytic fragmentation and mass spectrometry were performed using purified gB-S, and the five disulfide bonds that link 10 of the 11 highly conserved cysteine residues of gB were mapped. These bonds are C94-C550, C111-C506, C246-C250, C344-C391, and C573-C610. This configuration closely parallels the disulfide bond configuration of herpes simplex type 2 (HSV-2) gB (N. Norais, D. Tang, S. Kaur, S. H. Chamberlain, F. R. Masiarz, R. L. Burke, and F. Markus, J. Virol. 70:7379-7387, 1996). However, despite the high degree of conservation of cysteine residues between CMV gB and HSV-2 gB, the disulfide bond arrangements of the two homologs are not identical. We detected a disulfide bond between the conserved cysteine residue 246 and the nonconserved cysteine residue 250 of CMV gB. We hypothesize that this disulfide bond stabilizes a tight loop in the amino-terminal fragment of CMV gB that does not exist in HSV-2 gB. We predicted that the cysteine residue not found in a disulfide bond of CMV gB, cysteine residue 185, would play a role in dimerization, but a cysteine substitution mutant in cysteine residue 185 showed no apparent defect in the ability to form dimers. These results indicate that gB oligomerization involves additional interactions other than a single disulfide bond. This work represents the second reported disulfide bond structure for a herpesvirus gB homolog, and the discovery that the two structures are not identical underscores the importance of empirically determining structures even for highly conserved proteins.  相似文献   

3.
A biochemical analysis of glycoprotein C (gC of herpes simplex virus was undertaken to further characterize the structure of the glycoprotein and to determine its disulfide bond arrangement. We used three recombinant forms of gC, gC1(457t), gC1(delta33-123t), and gC2(426t), each truncated prior to the transmembrane region. The proteins were expressed and secreted by using a baculovirus expression system and have been shown to bind to monoclonal antibodies which recognize discontinuous epitopes and to complement component C3b in a dose-dependent manner. We confirmed the N-terminal residues of each mature protein by Edman degradation and confirmed the internal deletion in gC1(delta33-123t). The molecular weight and extent of glycosylation of gC1 (457t), gC1(delta33-123t), and gC2(426t) were determined by treating each protein with endoglycosidases and then subjecting it to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric analysis. The data indicate that eight to nine of the predicted N-linked oligosaccharide sites on gC1(457t) are occupied by glycans of approximately 1,000 Da. In addition, O-linked oligosaccharides are present on gC1(457t), primarily localized to the N-terminal region (amino acids [aa] 33 to 123) of the protein. gC2(426t) contains N-linked oligosaccharides, but no O-linked oligosaccharides were detected. To determine the disulfide bond arrangement of the eight cysteines of gC1(457t),the protein was cleaved with cyanogen bromide. SDS-PAGE analysis followed by Edman degradation identified three cysteine-containing fragments which are not connected by disulfide linkages. Chemical modification of cysteines combined with matrix-assisted laser desorption ionization mass spectrometry identified disulfide bonds between cysteine 1 (aa 127) and cysteine 2 (aa 144) and between cysteine 3 (aa 286) and cysteine 4 (aa 347). Further proteolysis of the cyanogen bromide-generated fragment containing cysteine 5 through cysteine 8, combined with mass spectrometry and Edman degradation, showed that disulfide bonds link cysteine 5 (aa 386) to cysteine 8 (aa 442) and cysteine 6 (aa 390) to cysteine 7 (aa 419). A similar disulfide bond arrangement is postulated to exist in gC homologs from other herpesviruses.  相似文献   

4.
Glycoprotein H (gH) is an envelope protein conserved in the Herpesviridae. Together with glycoprotein B (gB), the heterodimeric complex of gH and glycoprotein L (gL) mediates penetration and direct viral cell-to-cell spread. In herpes simplex and pseudorabies virus (PrV), coexpression of gH/gL, gB, and gD induces membrane fusion to form polykaryocytes. The recently determined crystal structure of a core fragment of PrV gH revealed marked structural similarity to other gH proteins (M. Backovic et al., Proc. Natl. Acad. Sci. U. S. A. 107:22635-22640, 2010). Within the membrane-proximal part (domain IV), a conserved negatively charged surface loop (flap) is flanked by intramolecular disulfide bonds. Together with an N-linked carbohydrate moiety, this flap covers an underlying patch of hydrophobic residues. To investigate the functional relevance of these structures, nonconservative amino acid substitutions were introduced by site-directed mutagenesis. The mutated proteins were tested for correct expression, fusion activity, and functional complementation of gH-deleted PrV. Several single amino acid changes within the flap and the hydrophobic patch were tolerated, and deletion of the glycosylation site had only minor effects. However, multiple alanine substitutions within the flap or the hydrophobic patch led to significant defects. gH function was also severely affected by disruption of the disulfide bond at the C terminus of the flap and after introduction of cysteine pairs designed to bridge the central part of the flap with the hydrophobic patch. Interestingly, all mutated gH proteins were able to complement gH-deleted PrV, but fusion-deficient gH mutants resulted in a pronounced delay in virus entry.  相似文献   

5.
We previously constructed seven mutations in the gene for glycoprotein D (gD) of herpes simplex virus type 1 in which the codon for one of the cysteine residues was replaced by a serine codon. Each of the mutant genes was cloned into a eucaryotic expression vector, and the proteins were transiently expressed in mammalian cells. We found that alteration of any of the first six cysteine residues had profound effects on protein conformation and oligosaccharide processing. In this report, we show that five of the mutant proteins exhibit temperature-sensitive differences in such properties as aggregation, antigenic conformation, oligosaccharide processing, and transport to the cell surface. Using a complementation assay, we have now assessed the ability of the mutant proteins to function in virus infection. This assay tests the ability of the mutant proteins expressed from transfected plasmids to rescue production of infectious virions of a gD-minus virus, F-gD beta, in Vero cells. Two mutant proteins, Cys-2 (Cys-106 to Ser) and Cys-4 (Cys-127 to Ser), were able to complement F-gD beta at 31.5 degrees C but not at 37 degrees C. The rescued viruses, designated F-gD beta(Cys-2) and F-gD beta(Cys-4), were neutralized as efficiently as wild-type virus by anti-gD monoclonal antibodies, indicating that gD was present in the virion envelope in a functional form. Both F-gD beta(Cys-2) and F-gD beta(Cys-4) functioned normally in a penetration assay. However, the infectivity of these viruses was markedly reduced compared with that of the wild type when they were preincubated at temperatures above 37 degrees C. The results suggest that mutations involving Cys-106 or Cys-127 in gD-1 confer a temperature-sensitive phenotype on herpes simplex virus. These and other properties of the cysteine-to-serine mutants allowed us to predict a disulfide bonding pattern for gD.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by intermolecular interactions with the wild-type molecule. Together, these experiments confirmed that a disulfide bridge involving Cys-633 and Cys-596 is not essential for oligomerization but rather is required for proper folding and maintenance of a gB domain essential to complete posttranslational modification, transport, and incorporation into mature virus particles.  相似文献   

7.
The nucleotide sequence of the glycoprotein gB gene of equine herpesvirus 4 (EHV-4) was determined. The gene was located within a BamHI genomic library by a combination of Southern and dot-blot hybridization with probes derived from the herpes simplex virus type 1 (HSV-1) gB DNA sequence. The predominant portion of the coding sequences was mapped to a 2.95-kilobase BamHI-EcoRI subfragment at the left-hand end of BamHI-C. Potential TATA box, CAT box, and mRNA start site sequences and the translational initiation codon were located in the BamHI M fragment of the virus, which is located immediately to the left of BamHI-C. A polyadenylation signal, AATAAA, occurs nine nucleotides past the chain termination codon. Translation of these sequences would give a 110-kilodalton protein possessing a 5' hydrophobic signal sequence, a hydrophilic surface domain containing 11 potential N-linked glycosylation sites, a hydrophobic transmembrane domain, and a 3' highly charged cytoplasmic domain. A potential internal proteolytic cleavage site, Arg-Arg/Ser, was identified at residues 459 to 461. Analysis of this protein revealed amino acid sequence homologies of 47% with HSV-1 gB, 54% with pseudorabies virus gpII, 51% with varicella-zoster virus gpII, 29% with human cytomegalovirus gB, and 30% with Epstein-Barr virus gB. Alignment of EHV-4 gB with HSV-1 (KOS) gB further revealed that four potential N-linked glycosylation sites and all 10 cysteine residues on the external surface of the molecules are perfectly conserved, suggesting that the proteins possess similar secondary and tertiary structures. Thus, we showed that EHV-4 gB is highly conserved with the gB and gpII glycoproteins of other herpesviruses, suggesting that this glycoprotein has a similar overall function in each virus.  相似文献   

8.
Polyvalent rabbit antisera against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV), and Epstein-Barr virus (EBV), monospecific antisera against affinity-purified HSV-2 glycoproteins gB and gG, and a panel of monoclonal antibodies against HSV and EBV proteins were used to analyze cross-reactive molecules in cells infected with the four herpesviruses. A combination of immunoprecipitation and Western blotting with these reagents was used to determine that all four viruses coded for a glycoprotein that cross-reacted with HSV-1 gB. CMV coded for proteins that cross-reacted with HSV-2 gC, gD, and gE. Both CMV and EBV coded for proteins that cross-reacted with HSV-2 gG. Antigenic counterparts to the p45 nucleocapsid protein of HSV-2 were present in HSV-1 and CMV, and counterparts of the major DNA-binding protein and the ribonucleotide reductase of HSV-1 were present in all the viruses. The EBV virion glycoprotein gp85 was immunoprecipitated by antisera to HSV-1, HSV-2, and CMV. Antisera to CMV and EBV neutralized the infectivity of both HSV-1 and HSV-2 at high concentrations. This suggests that cross-reactivity between these four human herpesviruses may have pathogenic as well as evolutionary significance.  相似文献   

9.
TRPA1 (transient receptor potential ankyrin 1) is an ion channel expressed in the termini of sensory neurons and is activated in response to a broad array of noxious exogenous and endogenous thiol-reactive compounds, making it a crucial player in chemical nociception. A number of conserved cysteine residues on the N-terminal domain of the channel have been identified as critical for sensing these electrophilic pungent chemicals, and our recent EM structure with modeled domains predicts that these cysteines form a ligand-binding pocket, allowing for the possibility of disulfide bonding between the cysteine residues. Here, we present a comprehensive mass spectrometry investigation of the in vivo disulfide bonding conformation and in vitro reactivity of 30 of the 31 cysteine residues in the TRPA1 ion channel. Four disulfide bonds were detected in the in vivo TRPA1 structure: Cys-666-Cys-622, Cys-666-Cys-463, Cys-622-Cys-609, and Cys-666-Cys-193. All of the cysteines detected were reactive to N-methylmaleimide (NMM) in vitro, with varying degrees of labeling efficiency. Comparison of the ratio of the labeling efficiency at 300 μM versus 2 mM NMM identified a number of cysteine residues that were outliers from the mean labeling ratio, suggesting that protein conformation changes rendered these cysteines either more or less protected from labeling at the higher NMM concentrations. These results indicate that the activation mechanism of TRPA1 may involve N-terminal conformation changes and disulfide bonding between critical cysteine residues.  相似文献   

10.
Glycoprotein B homologs represent the most highly conserved group of herpesvirus glycoproteins. They exist in oligomeric forms based on a dimeric structure. Despite the high degree of sequence and structural conservation, differences in posttranslational processing are observed. Whereas gB of herpes simplex virus is not proteolytically processed after oligomerization, most other gB homologs are cleaved by a cellular protease into subunits that remain linked via disulfide bonds. Proteolytic cleavage is common for activation of viral fusion proteins, and it has been shown that herpesvirus gB homologs are essential for membrane fusion events during infection, e.g., virus penetration and direct viral cell-to-cell spread. To analyze the importance of proteolytic cleavage for the function of gB homologs, we isolated a mutant bovine herpesvirus 1 (BHV-1) expressing a BHV-1 gB that is no longer proteolytically processed because of a deletion of the proteolytic cleavage site and analyzed its phenotype in cell culture. We showed previously that BHV-1 gB can functionally substitute for the homologous glycoprotein in pseudorabies virus (PrV), based on the isolation of a PrV gB-negative PrV recombinant that expresses BHV-1 gB (A. Kopp and T. C. Mettenleiter, J. Virol, 66:2754-2762, 1992). Therefore, we also isolated a mutant PrV lacking PrV gB but expressing a noncleavable BHV-1 gB. Our results show that cleavage of BHV-1 gB is not essential for its function in either a BHV-1 or a PrV background. Compared with the PrV recombinant expressing cleavable BHV-1 gB, deletion of the cleavage site in the recombinant PrV did not detectably alter the viral phenotype, as analyzed by plaque assays, one-step growth kinetics, and penetration kinetics. In the BHV-1 mutant, the uncleaved BHV-1 gB was functionally equivalent to the wild-type protein with regard to penetration and showed only slightly delayed one-step growth kinetics compared with parental wild-type BHV-1. However, the resulting plaques were significantly smaller, indicating a role for proteolytic cleavage of BHV-1 gB in cell-to-cell spread of BHV-1.  相似文献   

11.
A human cytomegalovirus (HCMV) glycoprotein gene with homology to glycoprotein B (gB) of herpes simplex virus and Epstein-Barr virus and gpII of varicella zoster virus has been identified by nucleotide sequencing. The gene has been expressed in recombinant vaccinia virus and the gene product recognized by monoclonal antibodies and human immune sera. Rabbits immunized with the recombinant vaccinia virus produced antibodies that immunoprecipitate gB from HCMV-infected cells and neutralize HCMV infectivity in vitro. These data demonstrate a role for this protein in future HCMV vaccines.  相似文献   

12.
Glycoprotein gIII of pseudorabies virus is a member of a conserved gene family found in at least seven diverse herpesviruses. We report here that the putative cytoplasmic domain of gIII is not required for transport to the cell surface and, unlike the prototype domain from herpes simplex virus type 1 glycoprotein C, is not required for stable membrane anchoring. Furthermore, this domain does not appear to be essential for incorporation of the glycoprotein into virions.  相似文献   

13.
Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins.  相似文献   

14.
The extracellular domain of the subgroup A avian sarcoma and leukemia virus (ALSV-A) receptor contains a region that is related in sequence to the ligand-binding motifs of the low-density lipoprotein receptor (LDLR). This domain contains six cysteines that are highly conserved between different members of the LDLR protein superfamily, and these residues are presumed to participate in intrachain disulfide bonds. To assess the importance of each cysteine in the ALSV-A receptor, individual or multiple cysteines were mutated to alanines and the altered receptors were tested for the ability to confer susceptibility to viral infection. Receptors bearing single mutations allowed subgroup A viral entry, albeit at less than wild-type levels. Receptors containing two or three substitutions were completely inactive if one of the changed residues was Cys-35 or Cys-50. Of the altered receptors tested, the only exception to this rule was a functional receptor which lacked both Cys-35 and Cys-50, an activity that was dependent on the presence of other cysteines in this protein. Most interestingly, a receptor containing both Cys-35 and Cys-50 but lacking the other four cysteines was completely functional. These results demonstrate the importance of Cys-35 and Cys-50 for viral entry mediated by the ALSV-A receptor and show that in the presence of these two residues, all of the other cysteines in this protein can be removed without loss of this function.  相似文献   

15.
As the most abundant glycoprotein component of pulmonary surfactant, SP-A (Mr = 30,000-36,000) plays a central role in the organization of phospholipid bilayers in the alveolar air space. SP-A, isolated from lung lavage, exists in oligomeric forms (N = 6, 12, 18, ...), mediated by collagen-like triple helices and intermolecular disulfide bonds. These protein-protein interactions, involving the amino-terminal domain of SP-A, are hypothesized to facilitate the alignment of surfactant lipid bilayers into unique tubular myelin structures. SP-A reorganization of surfactant lipid was assessed in vitro by quantitating the calcium-dependent light scattering properties of lipid vesicle suspensions induced by SP-A. Accelerated aggregation of unilamellar vesicles required SP-A and at least 3 mM free calcium. The initial rate of aggregation was proportional to the concentration of canine SP-A over lipid:protein molar ratios ranging from 200:1 to 5000:1. Digestion with bacterial collagenase or incubation with dithiothreitol (DTT) completely blocked lipid aggregation activity. Both treatments decreased the binding of SP-A to phospholipids. The conditions used in the DTT experiments (10 mM DTT, nondenaturing Tris buffer, 37 degrees C) resulted in the selective reduction and 14C-alkylation of the intermolecular disulfide bond involving residue 9Cys, whereas the four cysteines found in the noncollagenous domain of SP-A were inefficiently alkylated with [14C]-iodoacetate. HPLC analysis of tryptic SP-A peptides revealed that these four cysteine residues participate in intramolecular disulfide bond formation (138Cys-229Cys and 207Cys-221Cys). Our data demonstrate the importance of the quaternary structure (triple helix and intermolecular disulfide bond) of SP-A for the aggregation of unilamellar phospholipid vesicles.  相似文献   

16.
Three amber mutations were introduced proximal to the syn3 locus of the herpes simplex virus type 1 glycoprotein B (gB) gene specifying gB derivatives lacking the carboxy-terminal 28, 49, or 64 amino acids. A complementation system that utilized gBs expressed in COS cells to complement gB-null virus K delta T was established. The 49- or 64-amino-acid-truncated gBs failed to complement gB-null virus K delta T, while the 28-amino-acid-truncated gB complemented K delta T efficiently. Mutant herpes simplex virus type 1 KOS (amb1511-7) specifying the 28-amino-acid-truncated gB fused Vero cells extensively.  相似文献   

17.
18.
By alignment to the carboxy-terminal-deduced aa sequence of human cytomegalovirus glycoprotein B (gB), conserved hexameric aa motifs with putative function for localization in the inner nuclear membrane (INM) were identified in the nucleoplasmic tails of herpes simplex virus type 1 gB and of the cellular lamin B receptor. Fusion of the respective hexamers to CD8 as a reporter redirected transport of the chimeras into the INM, suggesting their functioning as modular signal motifs. Consecutive experiments showed that the three-residue motif RxR represents a consensus sequence which is sufficient for localization of the CD8 reporter in the INM.  相似文献   

19.
An antigenic site (represented by 15 amino acids, residues 174 to 188, designated peptide 12) of the large glycoprotein G of respiratory syncytial virus was demonstrated to be subgroup specific in peptide enzyme-linked immunosorbent assay tests with murine monoclonal antibodies and human postinfection sera. The role of individual amino acids in this subgroup-specific site was determined by use of single-amino-acid-deletion sets of peptides. When monoclonal antibodies were reacted with the deletion sets, a broad amino acid dependence of 11 or 12 residues, Cys-176 (Ile-175 in subgroup B) to Cys-186, was found. Human postinfection sera exhibited a narrower reaction profile (for subgroup A, Cys-182 to Trp-183; for subgroup B, Cys-176 to Lys-183). Reduction of peptides on microtiter plates by treatment with dithiothreitol completely destroyed their antigenic activity in tests with monoclonal antibodies and human postinfection sera of subgroup B. A variant of peptide 12 containing all four cysteines of the G protein (represented by 16 amino acids, residues 172 to 187, designated peptide 12var) also was subgroup specific. We concluded that the activity of the antigenic site in tests with monoclonal antibodies for subgroups A and B appears to depend on intrapeptide disulfide bonds. Reactions with postinfection sera of subgroup B also may depend on a disulfide bond. In contrast, postinfection sera of subgroup A appeared to have the capacity to identify a subgroup-specific site in a linear form of the selected 15-amino-acid-long peptide. Treatment of peptides with dithiothreitol had no effect on their antigenic activity in tests with human postinfection sera of subgroup A. These findings have relevance for molecular engineering of peptide antigens for use in respiratory syncytial virus subgroup-specific site-directed serology.  相似文献   

20.
The pseudorabies virus gII gene shares significant homology with the gB gene of herpes simplex virus type 1. Unlike gB, however, gII is processed by specific protease cleavage events after the synthesis of its precursor. The processed forms are maintained in an oligomeric complex that includes disulfide linkages. In this report, we demonstrate the kinetics of modification, complex formation, and subsequent protease processing. In particular, we suggest that gII oligomer formation in the endoplasmic reticulum is an integral part of the export pathway and that protease cleavage occurs only after oligomers have formed. Furthermore, through the use of glycoprotein gene fusions between the gIII glycoprotein and the gII glycoprotein genes of pseudorabies virus, we have mapped a functional cleavage domain of gII to an 11-amino-acid segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号