首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Escherichia coli lost its colony-forming ability when suspended in Tris/NaOH or Tris/Mg2+ buffers of pH 10.0 and 4.0, respectively. A significant decrease in the survival of radiation-sensitive mutants recA, polA, res, rer and lexA was observed as compared to their wild-type counterpart under these conditions. The alkali-injured cells were found to recover when incubated at 37 degrees C for 2 h in 0.05 M phosphate buffer of pH 8.0, whereas no such liquid holding recovery was observed in recA and lexA mutants. Recovery in phosphate buffer was not affected by metabolic inhibitors. As a result of alkali treatment, the sensitivity of bacteria to ultraviolet light (UV) was enhanced. However, on incubation for 2 h in recovery buffer at 37 degrees C, the bacteria regained partial UV resistance. Bacteria exposed to alkaline environment exhibited an enhanced level of mutagenesis. Contrary to the treated wild-type, the mutants recA and lexA did not exhibit any increase in the mutation frequency. Alkali treatment to GC----AT transition mutants of Salmonella typhimurium, TA102 and TA104 resulted in the highest number of revertants per plate.  相似文献   

2.
The UV radiation survival of several Escherichia coli K12 strains was measured after pretreatment of the cells with dithiothreitol (DTT). In DNA repair-competent cells (AB1157), UV survival was enhanced (ER = 1.2) after pretreating cells for 1.0 h using 10 mmol dm-3 DTT and then incubating the cells for 1.5 h in buffer before UV irradiation. Similar experiments using the excision repair mutant, AB1886uvrA6, or the recombination repair and SOS-deficient mutant, AB2462recA, strains did not show enhanced UV survival. None of the E. coli strains tested were protected against UV killing by simultaneous treatment with DTT (10 mmol dm-3). These results, and the fact that incubation in chloramphenicol removed the wild-type response in DTT-pretreated, UV-irradiated cells, suggest that the observed UV radioprotection was a result of inducible enzymatic repair processes such as recA-dependent repair. The proposed stimulus for inducible repair in these cells is DNA damage caused by intracellular hydroxyl radicals arising from thiol oxidation. The involvement of oxygen radicals in the induction pathway is supported by results that showed superoxide dismutase and catalase could inhibit a portion (one-third) of the inducible repair.  相似文献   

3.
Susceptibility to UV irradiation of B. cereus BIS-59 spores undergoing germination at various stages-dormant spores to vegetative cell stage and their ability to recover from radiation damage were studied. For a given dose of radiation, the number of spore photoproducts (SPP) formed in the DNA of dormant spores was about 5-times greater than that of thymine dimers (TT) formed in the DNA of vegetative cells. At intermediate stages of the germination cycle, there was a rapid decline in the UV radiation-induced SPP formed in DNA with a concomitant increase in the UV radiation-induced TT formed in DNA. Bacterial spores undergoing germination (up to 3 hr) in the low nutrient medium (0.3% yeast extract) displayed much higher resistance to UV radiation than those germinating in the rich nutrient medium, even though there was no discernible difference under the two incubation conditions in respect of the extent of germination and the time at which the outgrowth stage appeared (3 hr). This was due to the formation TT in the DNA of spores germinating in the low nutrient as compared to that of spores germinating in the rich-nutrient medium. In UV-irradiated dormant spores, SPP formed in the spore DNA did not disappear even after prolonged incubation in the non-germinating medium. However, when the UV-irradiated dormant spores were germinated in low or rich nutrient medium, a significant proportion of SPP in DNA was eliminated. The dormant spores incubated in either of the germinating media for 15 min and then UV-irradiated were capable of eliminating SPP (presumably by monomerization) even by incubation in a non-germinating medium and in the complete absence of protein synthesis (buffer holding recovery), thereby implying that spore-repair enzymes were activated in response to initial's germination. The acquisition of photo-reactivation ability appeared in spores subjected to germination only in the rich-nutrient medium at the outgrowth stage and required de novo synthesis of the required enzymes.  相似文献   

4.
A mutant (uvr-1) of Bacillus subtilis that is deficient in excision of ultraviolet (UV)-induced pyrimidine dimers from deoxyribonucleic acid (DNA) shows a marked increase in ability to survive UV irradiation when plated on amino acid-supplemented agar medium compared with its survival ability when plated on nutrient plating medium, the effect is considered to be one of growth-dependent lethality. Irradiated stationary phase uvr-1 cells, incubated in liquid medium lacking amino acids required for growth, recover from this sensitivity to rich medium within 3 to 4 h after irradiation. Recovery is greatly reduced in the absence of glucose oiminated. Exponentially growing cells have a limited ability to recover from sensitivity to rich medium. Growth-dependent lethality can also occur in liquid medium. In nutrient broth the ability of irradiated stationary-phase uvr-1 cells to form colonies on defined agar medium decreases during postirradiation incubation, but treatmeth with chloramphenicol inhibits the loss of colony-forming ability. Recovery from sensitivity to rich media is inhibited by caffeine but not by 6-(p-hydroxyphenylazo)-uracil, and inhibitor of DNA replication. Alkaline sucrose gradient profiles show that conditions allowing recovery also favor maintaining intact DNA strands, whereas DNA strand breakage or degradation is associated with loss of viability. Recovery from sensitivity to rich medium has not been observed in the Ur+ parent or in strains carrying the mutations uvs-42 (another deficiency in dimer excision), recA1, or polA59. A uvr-1 recA1 mutants shows a higher level of recovery than does the recA1 single mutant, but a much lower level than the uvr-1 single mutant. Apparently, both the uvr-1 defect and Rec+ and PoII+ functions are essential for recovery from sensitivity to rich medium. For optimal recovery, growth immediately after irradiation must be delayed. The process requires energy, apparently involves recombination, and probably results in rejoining of DNA strands in which incision but not excision has occurred.  相似文献   

5.
Salmonella typhimurium strains with supX mutations are more sensitive than wild type to killing by ultraviolet (UV) irradiation. Studies with strains bearing the leuD21 mutation revealed that inactivation of the supX locus by a nonsense mutation or a deletion results in a complete lack of ability to produce induced Leu+ reversion mutations after UV irradiation. Suppression of the nonsense supX mutation or the presence of an Escherichia coli K-12 F'-borne supX+ allele restored the capacity for induced reversions and increased cell survival after UV irradiation. Introduction of plasmid pKM101 into supX mutant strains also restored their capacity for UV mutagenesis as well as increased survival. The possible nature of the supX gene product and mechanisms by which it may affect expression of the inducible SOS error-prone repair system are considered.  相似文献   

6.
In temperature-sensitive (ts) mutants of mouse FM3A cells, the levels of mutagenesis and survival of cells treated with DNA-damaging agents have been difficult to assess because they are killed after their mutant phenotypes are expressed at the nonpermissive temperature. To avoid this difficulty, we incubated the ts mutant cells at the restrictive temperature, 39 degrees C, for only a limited period after inducing DNA damage. We used ts mutants defective in genes for ubiquitin-activating enzyme (E1), DNA polymerase alpha, and p34(cdc2) kinase. Whereas the latter two showed no effect, E1 mutants were sensitized remarkably to UV light if incubated at 39 degrees C for limited periods after UV exposure. Eighty-five percent of the sensitization occurred within the first 12 h of incubation at 39 degrees C, and more than 36 h at 39 degrees C did not produce any further sensitization. Moreover, while the 39 degrees C incubation gave E1 mutants a moderate spontaneous mutator phenotype, the same treatment significantly diminished the level of UV-induced 6-thioguanine resistance mutagenesis and extended the time necessary for expression of the mutation phenotype. These characteristics of E1 mutants are reminiscent of the defective DNA repair phenotypes of Saccharomyces cerevisiae rad6 mutants, which have defects in a ubiquitin-conjugating enzyme (E2), to which E1 is known to transfer ubiquitin. These results demonstrate the involvement of E1 in eukaryotic DNA repair and mutagenesis and provide the first direct evidence that the ubiquitin-conjugation system contributes to DNA repair in mammalian cells.  相似文献   

7.
The effect of the CAM-OCT plasmid on responses to UV irradiation of Pseudomonas aeruginosa recA mutants was characterized. Mutant alleles examined included rec-1, rec-2, and recA7::Tn501. The plasmid substantially enhanced both survival and mutagenesis of RecA- cells after treatment with UV light. Survival of the RecA-(CAM-OCT) cells after UV irradiation was intermediate between that seen in the wild-type P. aeruginosa PAO1 and the increased survival seen in PAO1(CAM-OCT) cells. Mutability was quantitated by the reversion to carbenicillin resistance of strains carrying a bla(Am) mutation on a derivative of plasmid RP1. UV-induced mutagenesis of CAM-OCT carrying recA mutants occurred at levels comparable to that seen in PAO1(CAM-OCT). The ability of CAM-OCT plasmid to suppress the recombination deficiency in recA mutants was tested by assaying for bacteriophage F116L-generalized transduction of a Tn7 insertion in the alkane utilization genes of CAM-OCT. Transduction of the Tn7 insertion was not detected in RecA-(CAM-OCT) strains but was easily seen in PAO1(CAM-OCT), indicating that the plasmid does not encode a recA analog. The results indicate that the CAM-OCT UV response genes are expressed in RecA- cells, which differs from results seen with other UV response-enhancing plasmids. The results suggest that CAM-OCT either encodes several UV responses genes itself or induces chromosomal UV response genes by an alternate mechanism.  相似文献   

8.
After ultraviolet (UV) irradiation, an Escherichia coli K12 uvrB5 recB21 recF143 strain (SR1203) was able to perform a limited amount of postreplication repair when incubated in minimal growth medium (MM), but not if incubated in a rich growth medium. Similarly, this strain showed a higher survival after UV irradiation if plated on MM versus rich growth medium (i.e., it showed minimal medium recovery (MMR]. In fact, its survival after UV irradiation on rich growth medium was similar to that of a uvrB5 recA56 strain, which does not show MMR or postreplication repair. The results obtained with a uvrB5 recF332::Tn3 delta recBC strain and a uvrB5 recF332::Tn3 recB21 recC22 strain were similar to those obtained for strain SR1203, suggesting that the recB21 and recF143 alleles are not leaky in strain SR1203. The treatment of UV-irradiated uvrB5 recB21 recF143 and uvrB5 recF332::Tn3 delta recBC cells with rifampicin for 2 h had no effect on survival or the repair of DNA daughter-strand gaps. Therefore, a pathway of postreplication repair has been demonstrated that is constitutive in nature, is inhibited by postirradiation incubation in rich growth medium, and does not require the recB, recC and recF gene products, which control the major pathways of postreplication repair.  相似文献   

9.
CHO cells undergo proliferative arrest when incubated in medium deficient in the amino acid arginine (ADM). Cells arrested in this way can be released and resume mitotic activity after a brief lag period. The incidence of U.V.-induced sister chromatid exchanges (SCEs) induced in cells arrested in ADM was reduced when the cells were incubated in ADM after irradiation and prior to release. Periods of incubation in ADM of 24 and 48 h prior to release reduced the resulting SCE levels (relative to the SCE levels present in cells irradiated immediately prior to release) by an average of 35 and 45% respectively. A similar time-dependent decrease in the incidence of chromosome aberrations induced in CHO cells arrested in ADM was not observed. Despite the decrease in SCEs over time in ADM, the survival of ADM-arrested cells was not enhanced by a period of incubation in ADM after irradiation of 48 h. These observations are consistent with the hypothesis that the U.V.-induced lesions responsible for the induction of SCE are repaired in time in ADM-arrested CHO cells. Repair of those lesions resulting in chromosome aberrations was not detected in ADM-arrested CHO cells. This absence of repair of certain lesions was apparently reflected in the absence of any enhancement of cell survival.  相似文献   

10.
Summary We have found that several excision deficient derivatives of Escherichia coli K12 survive better after UV irradiation if incubated at 42°C than if incubated at 30°C. The highest survival was observed when incubation at 42°C followed UV irradiation and was maintained for at least 16 h. Our results indicate that this temperature dependent resistance (TDR) requires a functional recA gene, but not uvr A, uvrB, recF, or recB genes, or the recA441 (tif-1) mutation which allows thermoinduction of the recA-lexA regulon. Our data are consistent with the idea that the increase in survival observed at 42°C reflects enhanced daughterstrand gap repair by DNA strand exchange. Although the conditions used to elicit TDR can induce heat shock proteins and thermotolerance in E. coli, the relationship between the two responses remains to be elucidated.  相似文献   

11.
The spores ofBacillus cereus can be germinated in reasonable synchrony in rich media. The survival of germinating cells after UV irradiation is strongly affected by repair. When plating on mineral agar a linear decrease of survival is obtained between 20–60 min of germination, whereas the survival on nutrient agar shows only minor fluctuations. The difference in survival on these two media which reached 1–2 orders of magnitude is due mostly to the shape of the shoulder on the survival curve. Survival on mineral agar may be increased by postincubation in complex media or by preincubation in mineral media. It was concluded that repression and derepression of biosynthetic pathways was responsible for the different efficiency of repair.  相似文献   

12.
Summary Cysts ofNaegleria gruberi have a normal UV- and an extremely high X-ray resistance compared to other protozoans. Caffeine and 3-aminobenzamide applied to excysting amoeba after irradiation in the encysted state (UV and X-rays) by feeding with drug-containing bacteria increased lethality, while fractionated irradiation (UV) and liquid-holding (UV and X-rays) increased survival. Illumination with visible light after UV-irradiation restored almost 100% viability. The results are discussed in regard to the activity of repair mechanisms.  相似文献   

13.
Bacterial survival after UV irradiation was increased in E. coli K12 lexB30 and tif zab-53 mutants harboring plasmid pKM101. Mutagenesis in response to UV was observed in these bacteria which, in absence of pKM101, are not UV-mutable. The mutator effect observed in unirradiated wild-type cells containing pKM101 was higher after incubation at 30°C with adenine than at 37°C. This effect was still enhanced by tif mutation, even in the tif zab-53 strain, but it was abolished by lexB30 mutation. In the tif zab-53 (pKM101) strain, repair and mutagenesis of UV-irradiated phage λ was observed, but not in the lexB30 mutant carrying pKM101. The pKM101 mutant, pGW1, was unable to protect tif zab-53 bacteria against killing by UV, whereas the protection of lexB30 was intermediate; moreover, it did not promote the mutator effect at 30°C or enhance phage repair and mutagenesis in tif zab-53 cells. All UV-induced bacterial mutations in lexB30 (pKM101) strain were suppressors; in contrast, true revertants were found after UV irradiation of the tif zab-53 (pKM101) cells.We suggest that the constitutive activity of RecA protein is enough for the production of UV-promoted suppressor mutations, whereas true reversions require a more active form of this protein which could exert its effects directly or by acting at a regulatory level on other cellular functions.  相似文献   

14.
Cultured cells of Microtus agrestis, the common field vole, perform unscheduled DNA synthesis after UV irradiation. They respond to incubation with a DNA synthesis inhibitor (1-beta-D-arabinofuranosylcytosine) following UV in ways typical of cells capable of excision repair, with reduced survival and an accumulation of breaks in pre-existing DNA. Microtus cells irradiated with UV in a quiescent pre-S-phase state are more sensitive to UV than are proliferating cells, in terms of survival. Adding DNA precursors (deoxyribonucleosides), and--in case of proliferating cells--growing in complete rather than dialysed serum, enhance UV survival. Quiescent cells show a higher rate of endonucleolytic incision of DNA after UV than do proliferating cells. The balance between incision (producing single-strand DNA breaks) and repair DNA synthesis (leading to rejoining of breaks) is shifted by the addition of deoxyribonucleosides, which suggests that DNA precursor supply is a rate-limiting factor in repair. The lower survival of quiescent cells (in the absence of added deoxyribonucleosides) may be due to insufficient precursor supply to meet the demands of the high incision rate.  相似文献   

15.
Colony formation is the classic method for measuring survival of yeast cells. This method measures mitotic viability and can underestimate the fraction of cells capable of carrying out other DNA processing events. Here, we report an alternative method, based on cell metabolism, to determine the fraction of surviving cells after ultraviolet (UV) irradiation. The reduction of 2,3,5-triphenyl tetrazolium chloride (or TTC) to formazan in mitochondria was compared with cell colony formation and DNA repair capacity in wt cells and two repair-deficient strains (rad1Delta and rad7Delta). Both TTC reduction and cell colony formation gave a linear response with different ratios of mitotically viable cells and heat-inactivated cells. However, monitoring the formation of formazan in non-dividing yeast cells that are partially (rad7Delta) or totally (wt) proficient at DNA repair is a more accurate measure of cell survival after UV irradiation. Before repair of UV photoproducts (cis-syn cyclobutane pyrimidine dimers or CPDs) is complete, these two assays give very different results, implying that many damaged cells are metabolically competent but cannot replicate. For example, only 25% of the rad7Delta cells are mitotically viable after a UV dose of 12 J/m(2)75% of these cells are metabolically competent and remove over 55% of the CPDs from their genomic DNA. Moreover, repair of CPDs in wt cells dramatically decreases after the first few hours of liquid holding (L.H.; incubation in water) and correlates with a substantial decrease in cell metabolism over the same time period. In contrast, cell colony formation may be the more accurate indicator of cell survival after UV irradiation of rad1Delta cells (i.e., cells with little DNA repair activity). These results indicate that the metabolic competence of UV-irradiated, non-dividing yeast cells is a much better indicator of cell survival than mitotic viability in partially (or totally) repair proficient yeast cultures.  相似文献   

16.
Host-cell reactivation, that is, the degree of survival of Herpes simplex virus after UV irradiation, was high in African green monkey BSC-1 cells, intermediate in normal human fibroblasts and human FL cells, and low in both xeroderma pigmentosum (XP) cells and mouse L cells. However, colony-forming ability after UV was high for FL, normal human fibroblasts and L cells, slightly low for BSC-1 cells and extremely low for XP cells. During the 24-h post-UV incubation period, up to about 50% of the thymine-containing dimers in the acid-insoluble DNA fraction disappeared at an almost equal rate for BSC-1, FL and normal human cells but remained unaltered for the XP cells. Alkaline sucrose gradient centrifugation of DNA after UV irradiation revealed only a slight difference between FL and BSC-1 cells in the kinetics of formation of single-strand breaks and their apparent repair. From these and the previously known characters of L cells possessing reduced excision-repair ability, if any, we may conclude that, if the survival of UV-irradiated Herpes simplex virus on a test line of human or other mammalian cells is as low as that on excisionless XP cells, then it is very probable that the test cell line is defective in excision repair. This reasoning leads to the presumptive conclusion that mouse L cells have an enhanced post-replication repair other than excision repair to deal with UV damage responsible for inactivation of colony-forming ability.  相似文献   

17.
The effects of multiple-dose gamma irradiation on the shape of survival curves were studied with mouse C3H 10T1/2 cells maintained in contact-inhibited plateau phase. The dose-fractionation intervals included 3, 6, and 24 h. Following three fractionated doses (5 Gy per dose) of exposures, cells responded to further irradiation by displaying a survival curve with a much reduced shoulder width (Dq) compared to that of the survival curve measured in cells irradiated with single-graded doses alone. The effect on the mean lethal dose (D0) was small and appeared to be significant. The effect on reduction of Dq could not be completely overcome by lengthening the fractionation intervals from 3 to 6 h or 24 h, times in which repair of sublethal damage (SLD) measured by simple split-dose scheme and potentially lethal damage (PLD) measured by postirradiation incubation was completed. Other experiments showed that pretreatments of cells with fractionated irradiation appeared to slow down the cellular repair processes of SLD and PLD. Therefore, the observed change in the shape of survival curves after fractionation treatments may be attributed to a reduction of the cells' capacity for damage accumulation by an enhancement of the lethal expression of SLD and PLD. Although the molecular mechanism(s) is not known, the results of this study indicate that the acute graded dose-survival curve cannot be used a priori to extrapolate and reliably predict results of hyperfractionation. It is probable that for a nondividing or slowly dividing cell population, such an extrapolation may lead to an underestimation of cell killing. Furthermore, the findings of this investigation appear to support an interpretation, alternative to the high-linear energy transfer (LET) track-end postulate, for the effects on cell survival seen at low doses or low dose rates.  相似文献   

18.
Ultraviolet light (UV) irradiation increased expansion of TMV lesions in detached Pinto bean primary leaves incubated in darkness. However, if after UV-irradiation the leaves were incubated in the light, no increase in lesion expansion occurred. The light effect was considered not to be due to photorepair of UV damaged DNA, since non-photorepairing treatments such as incubation in red light, or delayed exposure to white light after UV irradiation also prevented increase in lesion expansion. The effect of visible light in preventing TMV-lesion enlargement was shown to be related to photosynthetic energy supply to the host cell defense mechanism since incubation of infected leaves in the presence of the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-l,l-dimethyl urea (DCMU) in light caused large lesions whether leaves were irradiated by UV or not. Supplying 0.1 M sucrose in the dark also inhibited lesion enlargement in UV-irradiated or nonirradiated leaves. Dinitrophenol (DNP) negated the sucrose effect in the dark. However, in light incubation, DNP did not induce large lesions indicating that DNP did not interfere with energy supply in the light. It is concluded that the Pinto bean leaf cells can use energy derived both from mitochondria and chloroplasts for building the resistance mechanism to virus spread. In this case, cellular resistance to virus spread seems to be correlated with callose deposition on the walls of noninfected cells adjacent to the necrotic cells. Energy supply in various forms will assist host cells in building the resistance mechanism as well as retarding senescence. Detachment, prolonged dark incubation, or exogenous supply of DNP led to accelerated senescence which in turn led to secondary enlargement of lesions. The cause of such secondary enlargement may be explained by starvation of cells and disappearance of callose.  相似文献   

19.
The medium in which Rec(+) strains of Escherichia coli K-12 are grown affected their sensitivity to treatment with methyl methane sulfonate (MMS). Rec(+) cells grown to the stationary phase in glucose-enriched nutrient broth (GNB) were more resistant to MMS than cells grown in nutrient broth (NB). The repair of MMS-induced breaks (or alkali-labile bonds) in the deoxyribonucleic acid (DNA) from E. coli K-12 strains AB1157, AB1886 uvrA6, and SR111 recA13 recB21 grown in GNB and NB media was examined by means of alkaline sucrose gradient centrifugation. It appeared that essentially all of the repair of breaks that occurred, as evidenced by an increase in "molecular weight," took place within 10 min after treatment with MMS under our conditions. Cell survival was highest in cells for which the size of the DNA after the post-treatment incubation was the largest. The largest DNA after post-treatment incubation was found in Rec(+) cells grown in GNB medium. The results suggest that these cells may have an enhanced capacity for repairing breaks in DNA.  相似文献   

20.
Mouse lymphoma L5178 Y-S and Y-R cells differing in radiosensitivity by 1.5 times were treated with benzamide, an inhibitor of poly(ADP-ribosylation), for 24 h before and 18 h after X-irradiation, and incubated after irradiation at 25 degrees C and 37 degrees C. Clonogenic capacity of LY-S cells incubated at 25 degrees C exceeded that of the same cells incubated at 37 degrees C; the clonogenic capacity of LY-R cells did not vary with the postirradiation incubation temperature. Benzamide increased equally the radiosensitivity of LY-R cells incubated at both temperatures, whereas that of LY-S cells was only increased at 37 degrees C. Repair of potentially lethal damages to LY-S cells incubated at 25 degrees C was independent of the effectiveness of poly(ADP-ribosylation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号