首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The National Scrapie Plan (NSP) was launched in Great Britain in 2001, with the aim of eventually eradicating scrapie, a small ruminant transmissible spongiform encephalopathy, from the national sheep flock. Specifically, a selective breeding programme, the Ram Genotyping Scheme, was devised enabling pedigree ram breeders to reduce the number of scrapie-susceptible genotypes from their flocks. The effect of large-scale manipulation of PrP genotypes on commercially important traits within the sheep industry is, however, unknown. We have therefore examined production traits in a total of 43 968 lambs from 32 pedigree breeders across three British hill breeds, comprising 8163 North Country Cheviot (Hill), 21 366 Scottish Blackface and 14 439 Welsh Mountain lambs. Traits examined included: weights at birth, 8 and 20 weeks; ultrasonic fat and muscle depth, and average daily weight gain from 8 to 20 weeks. Linear mixed models were fitted for each trait, including animal (direct) genetic effects and up to three maternal effects. Potential associations with the PrP gene were assessed by fitting either PrP genotype or number of copies of individual alleles as fixed effects. A number of breed-specific significant associations between production traits and the PrP gene were found, but no consistent significant effects were detected across the three breeds. Breed-specific effects were as follows: (i) 0.37 kg higher birth weights (BWTs) in AHQ homozygous North Country Cheviot (Hill) lambs (P < 0.01); (ii) 0.16 kg higher BWTs in ARR homozygous Scottish Blackface lambs (P < 0.05); (iii) 0.5 kg higher 8-week weights in VRQ heterozygous Scottish Blackface lambs (P < 0.01); (iv) a 0.72 kg decrease in scan weight associated with homozygous ARR Welsh Mountain lambs (P < 0.01); (v) 0.51 mm higher ultrasonic muscle depths in AHQ homozygous Welsh Mountain lambs (P < 0.01); (vi) 0.48 mm lower ultrasonic muscle depths in Welsh Mountain lambs carrying one or more copies of the ARR allele (P < 0.05) and (vii) 0.2 mm higher ultrasonic fat depths in heterozygous VRQ Welsh Mountain lambs (P < 0.05). The use of a Bonferroni correction to define appropriate significance thresholds across the three datasets, which account for the large number of independent comparisons made, resulted in breed-specific comparisons, with P < 0.01 becoming significant at P0.05, and the remaining breed-specific comparisons no longer being significant. The absence of a common effect across the three breeds suggests that any true association found may be due to breed-specific alleles of neighbouring genes in linkage disequilibrium with the PrP locus.  相似文献   

2.
The infectious agents causing transmissible spongiform encephalopathies (TSEs), sometimes called prions, are notoriously difficult to completely inactivate or destroy. Here we tested a thermal hydrolysis system which combines saturated steam heating to 180 °C (10 bar), with stirring. The 301V-TSE strain, which has been derived by passage of BSE in mice, was used since it is the most thermostable TSE strain tested so far. All detectable TSE infectivity was destroyed, with a clearance factor of greater than 105 ID50. The use of this technology for the decontamination of TSE infected tissue waste and the potential uses of the end-products are discussed.  相似文献   

3.
Selection programmes based on prion protein (PrP) genotypes are being implemented for increasing resistance to scrapie. Commercial meat sheep populations participating in sire-referencing schemes were simulated to investigate the effect of selection on PrP genotypes on ARR and VRQ allele frequencies, inbreeding and genetic gain in a performance trait under selection. PrP selection strategies modelled included selection against the VRQ allele and in favour of the ARR allele. Assuming realistic initial PrP frequencies, selection against the VRQ allele had a minimal impact on performance and inbreeding. However, when selection was also in favour of the ARR allele and the frequency of this allele was relatively low, there was a loss of up to three to four years of genetic gain over the 15 years of selection. Most loss in gain occurred during the first five years. In general, the rate of inbreeding was reduced when applying PrP selection. Since animals were first selected on their PrP genotype before being selected on the performance trait, the intensity of selection on performance was weaker under PrP selection (compared with no PrP selection). Eradication of the VRQ allele or fixation of the ARR allele within 15 years of selection was possible only with PrP selection targeting all breeding animals.  相似文献   

4.
Prion diseases are associated with the conversion of cellular prion protein (PrP(C)) to toxic β-sheet isoforms (PrP(Sc)), which are reported to inhibit the ubiquitin-proteasome system (UPS). Accordingly, UPS substrates accumulate in prion-infected mouse brains, suggesting impairment of the 26S proteasome. A direct interaction between its 20S core particle and PrP isoforms was demonstrated by immunoprecipitation. β-PrP aggregates associated with the 20S particle, but did not impede binding of the PA26 complex, suggesting that the aggregates do not bind to its ends. Aggregated β-PrP reduced the 20S proteasome's basal peptidase activity, and the enhanced activity induced by C-terminal peptides from the 19S ATPases or by the 19S regulator itself, including when stimulated by polyubiquitin conjugates. However, the 20S proteasome was not inhibited when the gate in the α-ring was open due to a truncation mutation or by association with PA26/PA28. These PrP aggregates inhibit by stabilising the closed conformation of the substrate entry channel. A similar inhibition of substrate entry into the proteasome may occur in other neurodegenerative diseases where misfolded β-sheet-rich proteins accumulate.  相似文献   

5.
AIMS: To analyse the frequencies of prion (PrP) gene haplotypes in UK sheep flocks and evaluate their relevance to transmissible spongiform encephalopathies (TSEs) and TSE resistance breeding programmes in sheep. METHODS AND RESULTS: Genomic DNA isolated from sheep blood was PCR amplified for the coding region of the PrP gene and then sequenced. This study has analysed the sequence of PrP between codons 110 and 245 in 6287 ARQ haplotypes revealing a total of eight variant sequences, which represent a higher than expected 41% of all ARQ haplotypes. The additional PrP gene dimorphisms were M112T, L141F, M137T, H143R, H151C, P168L, Q175E and P241S. CONCLUSION: The results do not suggest a correlation between the occurrence of a specific ARQ haplotype and the scrapie disease status of a flock. The ARQ haplotype variability appears to be different in the UK sheep flocks compared with sheep flocks from outside the UK. SIGNIFICANCE AND IMPACT OF THE STUDY: Additional PrP dimorphisms may impact on the methodologies used for standard PrP genotyping in sheep breeding programmes. Some of these polymorphisms were found with significant frequencies in the UK sheep flocks and should therefore be considered in breeding programmes.  相似文献   

6.
The most essential and crucial step during the pathogenesis of transmissible spongiformencephalopathy is the conformational change of cellular prion protein (PrP~C) to pathologic isoform (PrP~(Sc)).Alot of data revealed that caveolae-like domains (CLDs) in the cell surface were the probable place where theconversion of PrP proteins happened.Apolipoprotein E (ApoE) is an apolipoprotein which is considered toplay an important role in the development of Alzheimer's disease and other neurodegenerative diseases byforming protein complex through binding to the receptor located in the clathrin-coated pits of the cell surface.In this study,a 914-bp cDNA sequence encoding human ApoE3 was amplified from neuroblastoma cell lineSH-SY5Y.Three human ApoE isomers were expressed and purified from Escherichia coli.ApoE-specificantiserum was prepared by immunizing rabbits with the purified ApoE3.GST/His pull-down assay,immunoprecipitation and ELISA revealed that three full-length ApoE isomers interact with the recombinantfull-length PrP protein in vitro.The regions corresponding to protein binding were mapped in the N-terminalsegment of ApoE (amino acid 1-194) and the N-terminal of PrP (amino acid 23-90).Moreover,the recombinantPrP showed the ability to form a complex with the native ApoE from liver tissues.Our data provided directevidence of molecular interaction between ApoE and PrP.It also supplied scientific clues for assessing thesignificance of CLDs on the surface of cellular membrane in the process of conformational conversion fromPrP~C to PrP~(Sc) and probing into the pathogenesis of transmissible spongiform encephalopathy.  相似文献   

7.
Antibodies to the prion protein (PrP) have been critical to the neuropathological and biochemical characterization of PrP-related degenerative diseases in humans and animals. Although PrP is highly conserved evolutionarily, there is some sequence divergence among species; as a consequence, anti-PrP antibodies have a wide spectrum of reactivity when challenged with PrP from diverse species. We have produced an antibody [monoclonal antibody (mAb) 2-40] raised against a synthetic peptide corresponding to residues (106-126 of human PrP and have characterized it by epitope mapping, Western immunoblot analysis, and immunohistochemistry. The antibody recognizes not only human PrP isoforms but also pathological PrP from all species tested (i.e., sheep, hamsters, and mice). Together with the fact that it recognizes the whole PrP in both cellular and scrapie isoforms, mAb 2-40 may be helpful in studying conformational changes of the PrP, as well as establishing a possible connection between human and animal diseases.  相似文献   

8.
Y Levy  E Hanan  B Solomon  O M Becker 《Proteins》2001,45(4):382-396
A set of 34 molecular dynamic (MD) simulations totaling 305 ns of simulation time of the prion protein-derived peptide PrP106-126 was performed with both explicit and implicit solvent models. The objective of these simulations is to investigate the relative stability of the alpha-helical conformation of the peptide and the mechanism for conversion from the helix to a random-coil structure. At neutral pH, the wild-type peptide was found to lose its initial helical structure very fast, within a few nanoseconds (ns) from the beginning of the simulations. The helix breaks up in the middle and then unwinds to the termini. The spontaneous transition into the random coil structure is governed by the hydrophobic interaction between His(111) and Val(122). The A117V mutation, which is linked to GSS disease, was found to destabilize the helix conformation of the peptide significantly, leading to a complete loss of helicity approximately 1 ns faster than in the wild-type. Furthermore, the A117V mutant exhibits a different mechanism for helix-coil conversion, wherein the helix begins to break up at the C-terminus and then gradually to unwind towards the N-terminus. In most simulations, the mutation was found to speed up the conversion through an additional hydrophobic interaction between Met(112) and the mutated residue Val(117), an interaction that did not exist in the wild-type peptide. Finally, the beta-sheet conformation of the wild-type peptide was found to be less stable at acidic pH due to a destabilization of the His(111)-Val(122), since at acidic pH this histidine is protonated and is unlikely to participate in hydrophobic interaction.  相似文献   

9.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

10.
The present authors previously reported the nucleotide sequence of the 5' half of a cDNA encoding bovine prion protein (PrP) and the genomic structure of the bovine PrP gene encoding the 5'-untranslated region. Here they report the extent of intron 2 of the bovine PrP gene and the nucleotide sequence of the 3' half of bovine PrP cDNA that had not been determined before. This newly sequenced 3' half of the bovine PrP cDNA consisted of 2149 bp. The entire 3'-untranslated region (3'-UTR) was found to be encoded by a single exon, exon 3. One nucleotide polymorphism was found in the 3'-UTR. The length of intron 2 was estimated to be about 14 kbp. The structure of bovine PrP gene can be defined by combining the present results and previous reports on the bovine PrP gene.  相似文献   

11.
Prion diseases are associated with the misfolding of the prion protein (PrPC) from a largely α‐helical isoform to a β‐sheet rich oligomer (PrPSc). Flexibility of the polypeptide could contribute to the ability of PrPC to undergo the conformational rearrangement during PrPC–PrPSc interactions, which then leads to the misfolded isoform. We have therefore examined the molecular motions of mouse PrPC, residues 113–231, in solution, using 15N NMR relaxation measurements. A truncated fragment has been used to eliminate the effect of the 90‐residue unstructured tail of PrPC so the dynamics of the structured domain can be studied in isolation. 15N longitudinal (T1) and transverse relaxation (T2) times as well as the proton‐nitrogen nuclear Overhauser effects have been used to calculate the spectral density at three frequencies, 0, ωN, and 0.87ωH. Spectral densities at each residue indicate various time‐scale motions of the main‐chain. Even within the structured domain of PrPC, a diverse range of motions are observed. We find that removal of the tail increases T2 relaxation times significantly indicating that the tail is responsible for shortening of T2 times in full‐length PrPC. The truncated fragment of PrP has facilitated the determination of meaningful order parameters (S2) from the relaxation data and shows for the first time that all three helices in PrPC have similar rigidity. Slow conformational fluctuations of mouse PrPC are localized to a distinct region that involves residues 171 and 172. Interestingly, residues 170–175 have been identified as a segment within PrP that will form a steric zipper, believed to be the fundamental amyloid unit. The flexibility within these residues could facilitate the PrPC–PrPSc recognition process during fibril elongation.  相似文献   

12.
The infectious agent of transmissible spongiform encephalopathies (TSE) has been considered to be PrP(SC), a structural isoform of cellular prion protein PrP(C). PrP(SC) can exist as oligomers and/or as amyloid polymers. Nucleic acids induce structural conversion of recombinant prion protein PrP and PrP(C) to PrP(SC) form in solution and in vitro. Here, we report that nucleic acids, by interacting with PrP in solution, produce amyloid fibril and fibres of different morphologies, similar to those identified in the diseased brains. In addition, the same interaction produces polymer lattices and spherical amyloids of different dimensions (15-150 nm in diameters). The polymer lattices show apparent morphological similarity to the two-dimensional amyloid crystals obtained from linear amyloids isolated in vivo. The spherical amyloids structurally resemble "spherical particles" observed in natural spongiform encephalopathy (SE) and in scrapie-infected brains (TSE). We suggest that spherical amyloids, PrP(SC)-amylospheroids, are probable constituents of the coat of the spherical particles found in vivo and the latter can act as protective coats of the SE and TSE agents in vivo.  相似文献   

13.
正常细胞的朊蛋白(PrPC)代谢和构象的改变是引发动物和人类可传播性海绵状脑病(transmissiblespongiformencephalopathies,TSEs)的根本原因。将羊瘙痒病(scrapie)仓鼠适应株263K颅内接种仓鼠,在接种后的第20、40、50、60、70、80天,通过Westernblot动态检测仓鼠脑中PrP存在的形式。结果在接种后第40天,在感染动物脑组织中即检测到PrPSc分子,比临床症状出现的时间早(平均潜伏期为66 7±1 1天),且无糖基化形式的PrP分子所占百分比在接种后期增加明显。除了标准分子量大小(30kD~35kD)的PrP分子外,在感染动物脑中存在着高分子量和低分子量形式的PrP分子。定量分析显示,随着接种潜伏期的延长,不同形式PrP分子的含量也在增加,其中低分子量形式的PrP分子与临床症状的出现密切相关。蛋白去糖基化实验表明,在感染动物脑组织中,除了标准分子量大小的PrP蛋白外,还存在一条更小分子量的PrP条带,而正常动物脑组织仅存在标准大小的PrP分子。低分子量形式的PrP分子具有与全长PrP分子相类似的糖基化模式。结果提示,scrapie263K感染的仓鼠脑组织中存在不同分子形式的PrPSc,其PrP分子的代谢可能不同于正常动物。  相似文献   

14.
Individual variations in structure and morphology of amyloid fibrils produced from a single polypeptide are likely to underlie the molecular origin of prion strains and control the efficiency of the species barrier in the transmission of prions. Previously, we observed that the shape of amyloid fibrils produced from full-length prion protein (PrP 23-231) varied substantially for different batches of purified recombinant PrP. Variations in fibril morphology were also observed for different fractions that corresponded to the highly pure PrP peak collected at the last step of purification. A series of biochemical experiments revealed that the variation in fibril morphology was attributable to the presence of miniscule amounts of N-terminally truncated PrPs, where a PrP encompassing residue 31-231 was the most abundant of the truncated polypeptides. Subsequent experiments showed that the presence of small amounts of recombinant PrP 31-231 (0.1-1%) in mixtures with full-length PrP 23-231 had a dramatic impact on fibril morphology and conformation. Furthermore, the deletion of the short polybasic N-terminal region 23-30 was found to reduce the folding efficiency to the native α-helical forms and the conformational stability of α-PrP. These findings are very surprising considering that residues 23-30 are very distant from the C-terminal globular folded domain in α-PrP and from the prion folding domain in the fibrillar form. However, our studies suggest that the N-terminal polybasic region 23-30 is essential for effective folding of PrP to its native cellular conformation. This work also suggests that this region could regulate diversity of prion strains or subtypes despite its remote location from the prion folding domain.  相似文献   

15.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control.  相似文献   

16.
The cellular isoform of the prion protein PrPC is a Cu2+-binding cell surface glycoprotein that, when misfolded, is responsible for a range of transmissible spongiform encephalopathies. As changes in PrPC conformation are intimately linked with disease pathogenesis, the effect of Cu2+ ions on the structure and stability of the protein has been investigated. Urea unfolding studies indicate that Cu2+ ions destabilise the native fold of PrPC. The midpoint of the unfolding transition is reduced by 0.73 ± 0.07 M urea in the presence of 1 mol equiv of Cu2+. This equates to an appreciable difference in free energy of unfolding (2.02 ± 0.05 kJ mol− 1 at the midpoint of unfolding). We relate Cu2+-induced changes in secondary structure for full-length PrP(23-231) to smaller Cu2+ binding fragments. In particular, Cu2+-induced structural changes can directly be attributed to Cu2+ binding to the octarepeat region of PrPC. Furthermore, a β-sheet-like transition that is observed when Cu ions are bound to the amyloidogenic fragment of PrP (residues 90-126) is due only to local Cu2+ coordination to the individual binding sites centred at His95 and His110. Cu2+ binding does not directly generate a β-sheet conformation within PrPC; however, Cu2+ ions do destabilise the native fold of PrPC and may make the transition to a misfolded state more favourable.  相似文献   

17.
Pathogenesis of transmissible spongiform encephalopathies is correlated with a conversion of the normal cellular form of the prion protein (PrPC) into the abnormal isoform (scrapie form of PrP). Contact of the normal PrP with its abnormal isoform, the scrapie form of PrP, induces the transformation. Knowledge of molecules that inhibit such contacts leads to an understanding of the mechanism of the aggregation, and these molecules may serve as leads for drugs against transmissible spongiform encephalopathies. Therefore, we screened a synthetic octapeptide library of the globular domain of the human PrPC for binding affinity to PrPC. Two fragments with binding affinity, 149YYRENMHR156 and 153NMHRYPNQ160, were identified with Kd values of 21 and 25 μM, respectively. A 10-fold excess of peptide 153NMHRYPNQ160 inhibits aggregation of the PrP by 99%. NMR and mass spectrometry showed that the binding region of the peptide 153NMHRYPNQ160 is located at helix 3 of the PrP.  相似文献   

18.
The three-dimensional structures of prion proteins (PrPs) in the cellular form (PrPC) include a stacking interaction between the aromatic rings of the residues Y169 and F175, where F175 is conserved in all but two so far analyzed mammalian PrP sequences and where Y169 is strictly conserved. To investigate the structural role of F175, we characterized the variant mouse prion protein mPrP[F175A](121-231). The NMR solution structure represents a typical PrPC-fold, and it contains a 310-helical β2-α2 loop conformation, which is well defined because all amide group signals in this loop are observed at 20 °C. With this “rigid‐loop PrPC” behavior, mPrP[F175A](121-231) differs from the previously studied mPrP[Y169A](121-231), which contains a type I β-turn β2-α2 loop structure. When compared to other rigid‐loop variants of mPrP(121-231), mPrP[F175A](121-231) is unique in that the thermal unfolding temperature is lowered by 8 °C. These observations enable further refined dissection of the effects of different single-residue exchanges on the PrPC conformation and their implications for the PrPC physiological function.  相似文献   

19.
Ilia V. Baskakov 《FEBS letters》2009,583(16):2618-2622
Amyloid fibrils are highly ordered crystal-like structures. It is generally assumed that individual amyloid fibrils consist of conformationally uniform cross-β-sheet structures that enable the amyloids to replicate their individual conformations via a template-dependent mechanism. Recent studies revealed that amyloids are capable of accommodating a global conformational switch from one amyloid strain to another within individual fibrils. The current review highlights the high adaptation potential of amyloid structures and discusses the implication of these findings for several emerging issues including prion strain adaptation (i.e. gradual change in strain structure). It also proposes that the catalytic activity of an amyloid structure should be separated from its templating effect, and raises the question of strain classification according to their promiscuous or species-specific nature.  相似文献   

20.
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt–Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrPSc) of the host-encoded prion protein (PrPc). 2. This article reviews the current knowledge on PrPc and PrPSc, prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号