首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holm J  Hansen SI 《Bioscience reports》2002,22(3-4):455-463
Two molecular forms of the folate binding protein were isolated and purified from human milk by a combination of cation exchange- and affinity chromatography. One protein (27 kDa) was a cleavage product of the other 100 kDa protein as evidenced by N-terminal amino acid sequence homology and a reduction in the molecular size of the latter protein to 27 kDa after cleavage of its hydrophobic glycosylphosphatidylinositol tail by phosphatidylinositol-specific phospholipase C. High-affinity binding of [3H]folate was characterized by upward convex Scatchard plots and increasing ligand binding affinity with decreasing concentrations of both proteins. Downward convex Scatchard plots and binding affinities showing no dependence on the protein concentration were, however, observed in highly diluted solutions of both proteins. Radioligand binding was inhibited by folate analogs, and dissociation of radioligand was slow at pH 7.4 but rapid and complete at pH 5.0 and 3.5. Ligand binding quenched the tryptophan fluorescence of the 27 kDa protein suggesting that tryptophan is present at the binding site and/or ligand binding induces a conformation change that affects tryptophan environment in the protein. The 27 kDa protein representing soluble folate binding protein exhibited a greater affinity for ligand binding than the 100 kDa protein which possesses a hydrophobic tail identical to the one that anchors the folate receptor to the cell membrane.  相似文献   

2.
Cation exchange chromatography combined with ligand (methotrexate) affinity chromatography on a column desorbed with a pH-gradient was used for separation and large scale purification of two folate binding proteins in human milk. One of the proteins, which had a molecular size of 27 kDa on gel filtration and eluted from the affinity column at pH 5-6 was a cleavage product of a 100 kDa protein eluted at pH 3-4 as evidenced by identical N-terminal amino acid sequences and a reduction in the molecular size of the latter protein to 27 kDa after cleavage of its hydrophobic glycosylphosphatidyl-inositol tail that inserts into Triton X-100 micelles. Chromatofocusing showed that both proteins possessed multiple isoelectric points within the pH range 7-9. The 100 kDa protein exhibited a high affinity to hydrophobic interaction chromatographic gels, whereas this was only the case with unliganded forms of the 27 kDa protein indicative of a decrease in the hydrophobicity of the protein after ligand binding.  相似文献   

3.
Binding of folate (pteroylglutamate) and 5-methyltetrahydrofolate, the major endogenous form of folate, to folate binding protein purified from cow's milk was studied at 7°C to avoid degradation of 5-methyltetrahydrofolate. Both folates dissociate rapidly from the protein at pH 3.5, but extremely slowly at pH 7.4, most likely due to drastic changes in protein conformation occurring after folate binding. Dissociation of 5-methyltetrahydrofolate showed no increase at 37°C suggesting that protein-bound-5-methyltetrahydrofolate is protected against degradation. Binding displayed two characteristics, positive cooperativity and a binding affinity that increased with decreasing concentrations of the protein. The binding affinity of folate was somewhat greater than that of 5-methyl tetrahydrofolate, in particular at pH 5.0. Ligand-bound protein exhibited concentration-dependent polymerization (8-mers formed at 13 M) at pH 7.4. At pH 5.0, only folate-bound forms showed noticeable polymerization. The fact that folate at pH 5.0 surpasses 5-methyltetrahydrofolate both with regard to binding affinity and ability to induce polymerization suggests that ligand binding is associated with conformational changes of the protein which favor polymerization.  相似文献   

4.
The ligand binding and aggregation behavior of cow's milk folate binding protein depends on hydrogen ion concentration and buffer composition. At pH 5.0, the protein polymerizes in Tris-HCl subsequent to ligand binding. No polymerization occurs in acetate, and binding is markedly weaker in acetate or citrate buffers as compared to Tris-HCl. Polymerization of ligand-bound protein was far more pronounced at pH 7.4 as compared to pH 5.0 regardless of buffer composition. Binding affinity increased with decreasing concentration of protein both at pH 7.4 and 5.0. At pH 5.0 this effect seemed to level off at a protein concentration of 10–6 M which is 100–1000 fold higher than at pH 7.4. The data can be interpreted in terms of complex models for ligand binding systems polymerizing both in the absence or presence of ligand (pH 7.4) as well as only subsequent to ligand binding (pH 5.0).  相似文献   

5.
The presence of a folate binding protein of high-affinity type (affinity constant 5 · 109M–1, maximum folate binding 3 nM) in human amniotic fluid was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Dissociation of3H-folate from the binding protein was slow at pH 7.4 but rapid at pH 3.5. By use of rabbit antibodies against low molecular weight folate binding protein from human milk we determined the concentration of folate binding protein in 5 amniotic fluids (range 1.5–2.3 nM) in an Enzyme-Linked Immunosorbent Assay (ELISA). ultrogel AcA 44 chromatography of amniotic fluid showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one (M r 25 000) and a minor one (M r 100 000).  相似文献   

6.
Holm J  Hansen SI 《Bioscience reports》2002,22(3-4):431-441
Folate binding protein was purified from cow's milk by a combination of cation exchange chromatography and methotrexate-AH-sepharose affinity chromatography. Dilution of the preparation to concentrations of protein less than 10 nM resulted in drastic changes of radioligand (folate) binding characteristics, i.e., a decrease in binding affinity with a change from upward to downward convex Scatchard plots and increased ligand dissociation combined with appearance of weak-affinity aggregated forms of the binding protein on gel filtration. These findings, consistent with a model predicting dimerization between unliganded and liganded monomers, were reversed in the presence of material eluted from the affinity column after adsorption of the protein(cofactor) or cholesterol, phospholipids, and synthetic detergents. The latter amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers in the surrounding aqueous medium and thereby prevent association between these monomeric forms prevailing at low concentrations of the protein. Our data have some bearings on studies which show that cholesterol and phospholipids are necessary for the clustering of folate receptors in the cell membrane; a process required for optimum receptor function and internalization of folate.  相似文献   

7.
We have characterized the folate receptor in normal and malignant tissue from male gonads. Radioligand binding displayed characteristics typical of other folate receptors. Those included a high-affinity type of binding (K = 1010 M–1), apparent positive cooperativity changing into non-cooperativity at low receptor concentrations, a tendency to increased binding affinity with decreasing receptor concentrations, a slow dissociation at pH 7.4 becoming rapid at pH 3.5 and inhibition by folates, in particular oxidized forms. The gel filtration profile of Triton X-100 solubilized tissue contained a 25 and 100 kDa peak of radioligand-receptor. The latter peak could represent receptor equipped with a hydrophobic membrane anchor that inserts into Triton X-100 micelles. The concentration of radiolabelled receptor ranged from 0.41 nmol/g protein to 1.68 nmol/g protein in specimens of normal testicular tissue from patients with prostatic carcinomas and from 1.54 nmol/g protein to 3.82 nmol/g protein in testicular tissue from young individuals. Compared to normal testicular tissue the concentration of receptor in seminoma tissue was low (0.38–1.27 nmol/g protein) but showed a higher degree of immunoreactivity in the presence of antibodies against human milk folate binding protein as evidenced by ELISA and immunohistochemistry data. Hence a folate receptor isoform homologous to human milk folate binding protein is apparently expressed in seminomas where the total expression of receptor, however, seems to be lower than in normal testicles.  相似文献   

8.
The presence of a folate binding protein of high-affinity type (affinity constant 3.1010M–1, maximum folate binding 1.4 nM) in human semen was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Radioligand dissociation from the binding protein was slow at pH 7.4, but rapid at pH 3.5. By use of rabbit antibodies against 25 kDa human milk folate binding protein we determined the concentration of folate binding protein in 16 speciments of human semen in an enzyme-linked immunosorbent assay. The concentration of immunoreactive folate binding protein was independent of the number of spermatozoa in individual specimens. Gel filtration showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one of 100 kDa and a minor one of 25 kDa.  相似文献   

9.
High-affinity3H-folate binding in Triton X-100 solubilized human mammary gland tissue displayed characteristics, e.g. apparent positive cooperativity and increasing affinity with decreasing concentration of folate binding protein, shown to be typical of specific folate binding. Radioligand dissociation was slow at pH 7.4. A major fraction of the bound radioligand dissociated rapidly at pH 3.5, while a residual binding of 20% persisted even after prolonged dialysis at pH 3.5. Gel chromatography revealed two major folate binding proteins (Mr100 kDa and 25 kDa). However, only one single band was detectable on SDS-PAGE immunoblotting. The highest folate binding activity per g protein was associated with the upper triglyceride-containing layer of the 1000 g supernatant of the homogenate. The folate binding protein extracted from this layer had a low cross-reactivity (<5%) with rabbit antibodies against 25 kDa human milk folate binding protein. The folate binding protein in the 1000 g pellet and the aqueous phase of the 1000 g supernatant was present at a low concentration and had a cross-reactivity of 100%.  相似文献   

10.
The solubilised ethylene-binding site (EBS) of Phaseolus vulgaris L. cotyledons is an asymmetrical protein with a sedimentation coefficient of 2 S and a Stoke's radius of 6.1 nm (determined by ultracentrifugation on isokinetic gradients and gel-permeation chromatography, respectively). The molecular weight and frictional ratio were calculated as 52 000–60 000 and 2.37–2.48, respectively. The EBS has an isoelectric point at between pH 3–5, determined by isoelectric focussing and exhibits a negative charge at pH 8 during non-denaturing electrophoresis. The electrical charge on the EBS is shielded; the EBS does not bind to anion-exchange media under the experimental conditions reported here, is not precipitated by ammonium sulphate and does not precipitate at its isoelectric pH. The EBS preferentially partitions into detergent phases. The results indicate that the EBS is a hydrophobic protein complexed with detergent in aqueous solution. The techniques used to characterise the EBS also resulted in varying degress of purification.Abbreviations EBS ethylene-binding site - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

11.
Summary An L1210 cell line (JT-1), which can grow in medium supplemented with 1nm folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37°C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23±0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37°C remained as unmetabolized folic acid. Binding was also rapid at 0°C but uptake at the plateau was only one-half the value obtained at 37°C. Half-maximal saturation of the binding component (K D) occurred at a folate concentration of 0.065nm at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (K D=2.0nm). 5-Methyltetrahydrofolate was also bound by this component (K i=13nm at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (K i=45nm) and methotrexate (K i=325nm). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500nm caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein. An additional low-affinity, high-capacity transport system for folate that had been proposed previously was not observed under a variety of experimental conditions in either the adapted or parental cells.  相似文献   

12.
The folate receptor (FR) in HeLa cells was characterized as to ligandbinding mechanism, antigenic properties and membrane anchor in order toobtain information to be used for the design of biological agentstargeting FR in malignant tumors. The receptor displayed the followingbinding characteristics in equilibrium dialysis experiments(37°C, pH 7.4) with [3H] folate: a high-affinity type of bindingthat exhibited positive cooperativity with a Hill coefficient >1.0and an upward convex Scatchard plot, a slow radioligand dissociation atpH 7.4 becoming rapid at pH 3.5 and inhibition in the presence of otherfolates. The molecular size of the receptor was 100 kDa on gel filtrationwith Triton X-100, or similar to that of high molecular weight human milkfolate binding protein (FBP). The latter protein represents a 25 kDamolecule which equipped with a hydrophobic glycosylphosphatidylinositol (GPI) membrane anchor susceptible to cleavage byphosphatidylinositol specific phospholipase C (PI-PLC) formsmicelles of 100 kDa size with Triton X-100. The HeLa cell FRimmunoreacted with antibodies against purified human milk FBP inELISA, and in a fluorescence activated cell sorting system, whereHeLa cells exposed to increasing concentrations of antibody showed adose-dependent response. Exposure to PI-PLC decreased the fraction ofimmunolabeled cells indicating a linkage of FR to cell membranes by aGPI anchor. HeLa cells incubated with radiofolate showed a continuousuptake with time, however, with a complete suppression of uptake in thepresence of an excess of cold folate. Prewash of cells at acidic pH toremove endogenous folate increased the uptake. Binding and uptake of [3H]folate was increased in cells grown in a folate-deprived medium. The HeLaFR seems to be epitope related to human milk FBP.  相似文献   

13.
High-affinity binding of [3H]folate in human urine displayed characteristics, e.g. apparent positive cooperativity, which are typical of specific folate binding. By means of a two-site enzyme-linked immunosorbent assay (ELISA) with rabbit antibodies against the low molecular weight folate binding protein from human milk, we measured folate binding protein concentrations in the range of 0.51 to 4.13 nM in urine samples from 16 apparently healthy individuals. Ultrogel AcA 44 chromatography of the urine showed that immunoreactive and radioligand bound folate binding protein coeluted in one large peak (Mr25,000).  相似文献   

14.

Background

The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of folate binding.

Methods

Self-association behavior of apo- and holo-FBP was addressed through size exclusion chromatography, SDS-PAGE, mass spectrometry, surface plasmon resonance and fluorescence spectroscopy.

Results

Especially holo-FBP exhibits concentration-dependent self-association at pH 7.4 (pI), and is more prone to associate into stable complexes than apo-FBP. Even more pronounced was the tendency to complexation between apo-FBP and holo-FBP in accord with a model predicting association between apo and holo monomers [19]. This will lead to removal of apo monomers from the reaction scheme resulting in a weak incomplete ligand binding similar to that observed at FBP concentrations < 10 nM. The presence of synthetic and natural detergents normalized folate binding kinetics and resulted in appearance of monomeric holo-FBP. Fluorescence spectroscopy indicated molecular interactions between detergent and tryptophan residues located in hydrophobic structures of apo-FBP which may participate in protein associations.

General significance

Self-association into multimers may protect binding sites, and in case of holo-FBP even folate from biological degradation. High-affinity folate binding in body secretions, typically containing 1–10 nM FBP, requires the presence of natural detergents, i.e. cholesterol and phospholipids, to avoid complexation between apo- and holo-FBP.  相似文献   

15.
High-affinity folate binding in human prostate   总被引:1,自引:0,他引:1  
Binding of3H-folate in Triton X-100 solubilized human prostate homogenate was of a high-affinity type and displayed apparent positive cooperativity typical of specific folate binding. Radioligand dissociation was slow at pH 7.4, but rapid at pH 3.5. Gel chromatography reveled two major folate binding proteins (Mr100 and 25kDa), but only one single band (Mr65–70 kDa) was detectable on SDS-PAGE and immunoblotting with rabbit-anti human milk folate binding protein. Concentration of folate binding protein in prostate homogenate expressed as maximum3H-folate binding was 1.10 nmol/g protein, and the cross-reactivity with rabbit-anti human milk folate binding protein serum was 15% as determined by an enzyme-linked immunosorbent assay (median values; n=6).  相似文献   

16.
High-affinity binding of3H-folate in Triton X-100 solubilized membranes of human liver displayed characteristics, e.g. apparent positive cooperativity, which are typical of specific folate binding. Ultrogel® AcA 44 chromatography of solubilized membranes saturated with3H-folate revealed a major peak of 100 kDa and a minor peak of 25 kDa. The 100 kDa peak could represent a hydrophobic membrane associated molecular form of the protein. This notion was supported by the fact that the two peaks had identical molecular weights as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis with immunoblotting.  相似文献   

17.
Two folate binding proteins are present in human milk; one of 27 kDa is a cleavage product of the other one (100 kDa) which possesses a hydrophobic membrane anchor. A drastic change of radioligand binding characteristics and appearance of aggregated weak-radioligand affinity forms on gel filtration occurred at low concentrations of both proteins in the absence of Triton X-100 or other amphiphatic substances, e.g. cetyltrimethylammonium and phospholipids. These findings are consistent with a model predicting association between unliganded and liganded monomers resulting in weak-ligand affinity dimers. Amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers (monomers become hydrophilic in the liganded state) thereby preventing association between these monomeric forms prevailing at low concentrations of the protein. Bio-Gel P-300 chromatography of the 27 kDa protein revealed a pronounced polymerization tendency, which diminished with decreasing protein concentrations, however, not in the presence of cetyltrimethylammonium. The data could have some bearings on observations indicating that naturally occurring amphiphatic substances, cholesterol and phospholipids, are necessary for the important clustering of membrane folate receptors.  相似文献   

18.
Rabbit antibodies to purified folate binding protein from cow's milk whey were used for development of a two-site enzyme-linked immunosorbent assay (ELISA) for quantitation of bovine folate binding proteins, The folate binding proteins in human milk and serum showed no cross-reactivity. A partial saturation of purified bovine folate binder with folate gave rise to an increased antigenicity probably due to a ligand (folate)-induced exposure of antigenic sites on the protein.  相似文献   

19.
The electrostatic potential surfaces were characterized for trp repressor models that bind to DNA with sequence specificity, without specificity, and not at all. Comparisons among the surfaces were used to isolate protein surface features likely to be important in DNA binding. Models that differ in protein conformation and tryptophan-analogue binding consistently showed positive potential associated with the protein surfaces that interact with the DNA major groove. However, negative potential is associated with the trp repressor surface that contacts the DNA minor groove. This negative potential is significantly neutralized in the protein conformation that is bound to DNA. Positive potential is also associated with the tryptophan binding-site surface, a consequence of the tryptophan- or tryptophan analogue-induced allosteric change. This protein region is complementary to the strongest negative potential associated with the DNA phosphate backbone and is also present in the isolated protein structure from the protein-DNA complex. The effects of charge-change mutation, pH dependence, and salt dependence on the electrostatic potential surfaces were also examined with regard to their effects on protein-DNA binding constants. A consistent model is formed that defines a role for long-range electrostatics early in the protein-DNA association process and complements previous structural, molecular association, and mutagenesis studies.  相似文献   

20.
Previous studies have demonstrated that the vitamin pyridoxal phosphate can alter the physicochemical properties of glucocorticoid receptors. We now report the localization of a pyridoxal phosphate binding site within the mero-receptor domain of this glucocorticoid receptor. Mero-glucocorticoid receptors that are generated by trypsin (10 μg/ml) or chymotrypsin (100 μg/ml) digestion of intact receptors sediment as 2.6 S species on 5–20% sucrose gradients in the presence or absence of pyridoxal phosphate. Mero-glucocoritcoid receptors prepared by exogenous proteinases are hydrophobic and show no affinity for DEAE Bio-Gel A. Treating either trypsin-generated or chymotrypsin-generated mero-receptors with pyridoxal phosphate rapidly converts the proteins (60 and 35%, respectively) into forms that bind to DEAE Bio-Gel A. Induction of DEAE binding is specific to pyridoxal phosphate, for treating mero-receptors with pyridoxal, pyridoxamine or pyridoxine phosphate is ineffective. Furthermore, DEAE binding cannot be induced by adding other pyridoxal phosphate-treated cytosols to untreated mero-receptors. High-resolution polyacrylamide gel isoelectric focussing studies indicated that treating mero-receptor generated by either proteinase with pyridoxal phosphate shifted the isoelectric points of lower pH values. The conversion of the mero-receptor to a more acidic form also occurred when the intact glucocorticoid receptor was treated with the vitamin prior to proteolysis. These studies localize at least one pyridoxal phosphate binding site on the mero-receptor domain of the rat thymocyte glucocorticoid receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号