首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We report the construction and characterization of several replication-competent simian immunodeficiency virus (SIV) vectors with a deletion in the viral nef gene (SIV(delta nef)) that express gamma interferon (IFN-gamma). The expression of the cytokine gene was controlled either by the simian virus 40 early promoter or by the SIV 5' long terminal repeat regulatory sequences, utilizing the nef gene splice signals. To enhance the expression of IFN-gamma, the two in-frame nef start codons were mutated without altering the Env amino acid sequence (SIV(HyIFN)). Plasmids containing full-length proviral genomes were used to obtain high-titer stocks of each recombinant virus in cell cultures. Expression of IFN-gamma by SIV(HyIFN) reached levels as high as 10(6) U/ml after 11 days in culture. The IFN-gamma gene was unstable and sustained deletions after serial passage of SIV(delta nef) vectors in CEM-X-174 cells. The degree of instability appears to depend on size and orientation of the insert and the expression of IFN-gamma. Only one virus, SIV(HyIFN), expressed detectable levels of IFN-gamma up to the sixth passage. Prospects for the use of IFN-gamma and other lymphokines to enhance the safety and efficacy of live attenuated vaccines are discussed.  相似文献   

4.
5.
To be effective, a vaccine against human immunodeficiency virus type 1 (HIV-1) must induce virus-specific T-cell responses and it must be safe for use in humans. To address these issues, we developed a recombinant vaccinia virus DIs vaccine (rDIsSIVGag), which is nonreplicative in mammalian cells and expresses the full-length gag gene of simian immunodeficiency virus (SIV). Intravenous inoculation of 10(6) PFU of rDIsSIVGag in cynomologus macaques induced significant levels of gamma interferon (IFN-gamma) spot-forming cells (SFC) specific for SIV Gag. Antigen-specific lymphocyte proliferative responses were also induced and were temporally associated with the peak of IFN-gamma SFC activity in each macaque. In contrast, macaques immunized with a vector control (rDIsLacZ) showed no significant induction of antigen-specific immune responses. After challenge with a highly pathogenic simian-human immunodeficiency virus (SHIV), CD4(+) T lymphocytes were maintained in the peripheral blood and lymphoid tissues of the immunized macaques. The viral set point in plasma was also reduced in these animals, which may be related to the enhancement of virus-specific intracellular IFN-gamma(+) CD8(+) cell numbers and increased antibody titers after SHIV challenge. These results demonstrate that recombinant DIs has potential for use as an HIV/AIDS vaccine.  相似文献   

6.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infect and productively replicate in macrophages and T lymphocytes. Here, we show that SIV virions derived from macrophages have higher levels of infectivity than those derived from T cells. The lower infectivity of T-cell-derived viruses is influenced by the quantity or type of mannose residues on the virion. Our results demonstrate that the cellular origin of a virus is a major factor in viral infectivity. Cell-type-specific factors in viral infectivity, and organ-specific or disease stage-specific differences in cellular derivation of virions, can be critical in the pathogenesis of HIV and AIDS.  相似文献   

7.
Virus-specific cytotoxic T lymphocytes (CTL) are critical for control of human immunodeficiency virus type 1 replication. However, viral escape from CTL recognition can undermine this immune control. Here we demonstrate the high frequency and pattern of viral escape from dominant epitope-specific CTL in SIV gag DNA-vaccinated rhesus monkeys following a heterologous simian immunodeficiency virus (SIV) challenge. DNA-vaccinated monkeys exhibited initial effective control of the SIV challenge, but this early control was lost by serial breakthroughs of viral replication over a 3-year follow-up period. Increases in plasma viral RNA correlated temporally with declines of dominant SIV epitope-specific CD8(+) T-lymphocyte responses and the emergence of viral mutations that escaped recognition by dominant epitope-specific CTL. Viral escape from CTL occurred in a total of seven of nine vaccinated and control monkeys, including three animals that initially controlled viral replication to undetectable levels of plasma viral RNA. These data suggest that CTL exert selective pressure on viral replication and that viral escape from CTL may be a limitation of CTL-based AIDS vaccine strategies.  相似文献   

8.
AIDS dementia and encephalitis are complications of AIDS occurring most frequently in patients who are immunosuppressed. The simian immunodeficiency virus (SIV) model used in this study was designed to reproducibly induce AIDS in macaques in order to examine the effects of a neurovirulent virus in this context. Pigtailed macaques (Macaca nemestrina) were coinoculated with an immunosuppressive virus (SIV/DeltaB670) and a neurovirulent molecularly cloned virus (SIV/17E-Fr), and more than 90% of the animals developed moderate to severe encephalitis within 6 months of inoculation. Viral load in plasma and cerebrospinal fluid (CSF) was examined longitudinally to onset of AIDS, and viral load was measured in brain tissue at necropsy to examine the relationship of systemic and central nervous system (CNS) viral replication to the development of encephalitis. In all animals, plasma viral load peaked at 10 to 14 days postinfection and remained high throughout infection with no correlation found between plasma viremia and SIV encephalitis. In contrast, persistent high levels of CSF viral RNA after the acute phase of infection correlated with the development of encephalitis. Although high levels of viral RNA were found in the CSF of all macaques (six of six) during the acute phase, this high level was maintained only in macaques developing SIV encephalitis (five of six). Furthermore, the level of both viral RNA and antigen in the brain correlated with the severity of the CNS lesions. The single animal in this group that did not have CNS lesions had no detectable viral RNA in any of the regions of the brain. The results substantiate the use of CSF viral load measurements in the postacute phase of SIV infection as a marker for encephalitis and CNS viral replication.  相似文献   

9.
To understand how natural sooty mangabey hosts avoid AIDS despite high levels of simian immunodeficiency virus (SIV) SIVsm replication, we inoculated mangabeys and nonnatural rhesus macaque hosts with an identical inoculum of uncloned SIVsm. The unpassaged virus established infection with high-level viral replication in both macaques and mangabeys. A species-specific, divergent immune response to SIV was evident from the first days of infection and maintained in the chronic phase, with macaques showing immediate and persistent T-cell proliferation, whereas mangabeys displayed little T-cell proliferation, suggesting subdued cellular immune responses to SIV. Importantly, only macaques developed (CD4+)-T-cell depletion and AIDS, thus indicating that in mangabeys limited immune activation is a key mechanism to avoid immunodeficiency despite high levels of SIVsm replication. These studies demonstrate that it is the host response to infection, rather than properties inherent to the virus itself, that causes immunodeficiency in SIV-infected nonhuman primates.  相似文献   

10.
Live, attenuated immunodeficiency virus vaccines, such as nef deletion mutants, are the most effective vaccines tested in the simian immunodeficiency virus (SIV) macaque model. In two independent studies designed to determine the breadth of protection induced by live, attenuated SIV vaccines, we noticed that three of the vaccinated macaques developed higher set point viral load levels than unvaccinated control monkeys. Two of these vaccinated monkeys developed AIDS, while the control monkeys infected in parallel remained asymptomatic. Concomitant with an increase in viral load, a recombinant of the vaccine virus and the challenge virus could be detected. Therefore, the emergence of more-virulent recombinants of live, attenuated immunodeficiency viruses and less-aggressive wild-type viruses seems to be an additional risk of live, attenuated immunodeficiency virus vaccines.  相似文献   

11.
Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.  相似文献   

12.
13.
We have devised a novel approach for producing simian immunodeficiency virus (SIV) strains and, potentially, human immunodeficiency virus type 1 (HIV-1) strains that are limited to a single cycle of infection. Unlike previous lentiviral vectors, our single-cycle SIV is capable of expressing eight of the nine viral gene products and infected cells release immature virus particles that are unable to complete subsequent rounds of infection. Single-cycle SIV (scSIV) was produced by using a two-plasmid system specifically designed to minimize the possibility of generating replication-competent virus by recombination or nucleotide reversion. One plasmid carried a full-length SIV genome with three nucleotide substitutions in the gag-pol frameshift site to inactivate Pol expression. To ensure inactivation of Pol and to prevent the recovery of wild-type virus by nucleotide reversion, deletions were also introduced into the viral pol gene. In order to provide Gag-Pol in trans, a Gag-Pol-complementing plasmid that included a single nucleotide insertion to permanently place gag and pol in the same reading frame was constructed. We also mutated the frameshift site of this Gag-Pol expression construct so that any recombinants between the two plasmids would remain defective for replication. Cotransfection of both plasmids into 293T cells resulted in the release of Gag-Pol-complemented virus that was capable of one round of infection and one round of viral gene expression but was unable to propagate a spreading infection. The infectivity of scSIV was limited by the amount of Gag-Pol provided in trans and was dependent on the incorporation of a functional integrase. Single-cycle SIV produced by this approach will be useful for addressing questions relating to viral dynamics and viral pathogenesis and for evaluation as an experimental AIDS vaccine in rhesus macaques.  相似文献   

14.
15.
Recombinant human adenoviruses (Ads) that replicate in the intestinal tract offer a novel, yet practical, means of immunoprophylaxis against a wide variety of viral and bacterial pathogens. For some infectious agents such as human immunodeficiency virus (HIV), the potential for residual infectious material in vaccine preparations must be eliminated. Therefore, recombinant human Ads that express noninfectious HIV or other microbial proteins are attractive vaccine candidates. To test such an approach for HIV, we chose an experimental model of AIDS based on simian immunodeficiency virus (SIV) infection of macaques. Our data demonstrate that the SIV Env gene products are expressed in cultured cells after infection with a recombinant Ad containing both SIV env and rev genes. An E3 deletion vector derived from a mutant of human Ad serotype 5 that efficiently replicates in both human and monkey cells was used to bypass the usual host range restriction of Ad infection. In addition, we show that the SIV rev gene is properly spliced from a single SIV subgenomic DNA fragment and that the Rev protein is expressed in recombinant Ad-SIV-infected human as well as monkey cells. The expression of SIV gene products in suitable live Ad vectors provides an excellent system for studying the regulation of SIV gene expression in cultured cells and evaluating the immunogenicity and protective efficacy of SIV proteins in macaques.  相似文献   

16.
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.  相似文献   

17.
Glutamate-mediated neurodysfunction in human immunodeficiency virus (HIV) infection has been primarily suggested by in vitro studies. The regulation of glutamatergic neurotransmission in inflammation is a complex interaction between activation of immune mediators and adaptive changes in the functional elements of the glutamatergic synapse. We have used simian immunodeficiency virus (SIV)-infected macaques to answer the questions (i) whether perturbation of glutamate neurotransmission is evident during progression of immunodeficiency disease and (ii) what are the mechanisms underlying this impairment. Disease progression in SIV-infected macaques both in the periphery and in the brain was documented by clinical and general pathological examination, plasma and brain viral RNA load, T-cell analysis and brain histopathology. We report for the first time, disruption of excitatory amino acid transporters (EAATs), the cardinal glutamate clearing system, during SIV infection and a dramatic loss of EAATs associated with development of rapid acquired immunodeficiency syndrome (AIDS). EAATs impairment was correlated with activation status of microglia. Our data support the glutamate hypothesis for the development of HIV dementia and suggest that the pathogenetic mechanism for the neurodysfunction is the impairment of glutamate clearing which occurs in the stage of AIDS and which is associated with activated microglia.  相似文献   

18.
19.
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is an intracellular enzyme possessing various immunosuppressive properties. Here, we report the possible use of this enzyme to suppress proliferation of immune cells cocultured with IDO-expressing fibroblasts of an allogenic skin substitute. Fetal skin fibroblasts embedded within bovine collagen were treated with cytokine interferon-gamma (IFN-gamma) to induce expression of IDO mRNA and protein. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by measurement of kynurenine and tryptophan levels in the IFN-gamma untreated and treated fibroblasts. The results of Northern analysis showed a dose-dependent increase in expression of IDO mRNA in response to various concentrations of IFN-gamma used. The levels of kynurenine and tryptophan measured, as the bioactivity of IDO, were significantly different in the IFN-gamma treated fibroblasts, compared to those of controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA was gradually reduced to an undetectable level within 32 h of IFN-gamma removal. The results of Western blot analysis, however, revealed a significantly longer (192 h) lasting effect of IFN-gamma on IDO protein level, relative to that of mRNA expression. To demonstrate immunosuppressive effects of IDO on proliferation of immune cells, IDO-expressing fibroblasts were cocultured with peripheral blood mononuclear cells (PBMC) for a period of 5 days. The results of (3)H-thymidine incorporation showed a significant reduction in proliferation of PBMC when cocultured with IDO-expressing fibroblasts, compared to those cocultured with non-IDO-expressing fibroblasts (P < 0.001). Furthermore, addition of IDO-inhibitor (1-methyl-d-tryptophan) reversed the suppressive effects of IDO on PBMC proliferation in a dose-dependant fashion. To test the viability of immune cells cocultured with IDO-expressing fibroblasts, FACS analysis of the PI stained PBMC was conducted and no significant difference was found between these cells and the controls. In another set of experiments, we showed that migration rate and subsequent proliferation of IDO-expressing fibroblasts are also the same as those of control cells. In conclusion, IDO-expressing allogenic fibroblasts embedded within collagen gel suppress the proliferation of allogenic immune cells, while they still remain viable in this IDO-induced tryptophan-deficient culture environment.  相似文献   

20.
Cytotoxic T-lymphocyte (CTL) responses frequently select for immunodeficiency virus mutations that result in escape from CTL recognition with viral fitness costs. The replication in vivo of such viruses carrying not single but multiple escape mutations in the absence of the CTL pressure has remained undetermined. Here, we have examined the replication of simian immunodeficiency virus (SIV) with five gag mutations selected in a macaque possessing the major histocompatibility complex haplotype 90-120-Ia after its transmission into 90-120-Ia-negative macaques. Our results showed that even such a "crippled" SIV infection can result in persistent viral replication, multiple reversions, and AIDS progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号