首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Growth conditions, including incubation times, temperature, agitation rate and initial pH of medium, that affect xylanase production by Aspergillus carneus M34 were studied sequentially use the classical “change-one-factor-at-a-time” method. Our results showed that there was a similar trend between cellular xylanase activity and extracellular xylanase activity. The optimal conditions for xylanase production, different from their cell growth, were on the third day, 30 °C, 100 rpm and pH 4, respectively, in this test. Response surface methodology (RSM) was further introduced to optimize the cultivation conditions and to evaluate the significance of these factors. The optimal cultivation conditions predicted from canonical analysis of this model were achieved by incubation at 35.08 °C with an agitation rate of 111.9 rpm and an initial pH of 5.16. In addition, temperature was the most critical factor for xylanase production by A. carneus M34. Xylanase activity of 22.2 U/mL was verified using the predicted optimal conditions and confirmed the fitness and applicability of the model. The optimal temperature and pH of the crude xylanase activity was observed at 60 °C and acidic pH, respectively. Sustained xylanase activity in the crude extract was also detected over a broad range of pH from 3 to 10. Considering its higher specificity toward agricultural wastes, especially corn cob and coba husk, this strain can be used to develop low-cost media for the mass-production of xylanase.  相似文献   

2.
Medium composition and culture conditions for the xylanases production by Bacillus mojavensis A21 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and Box-Behnken design used to optimize the value of the four significant variables: barley bran, NaCl, agitation, and cultivation time. The optimal conditions for higher production of xylanases were barley bran 18.66g/l, NaCl 1.04g/l, speed of agitation 176rpm and cultivation time 34.08h. Under these conditions, the xylanase experimental yield (7.45U/ml) closely matched the yield predicted by the statistical model (7.23U/ml) with R(2)=0.98. The medium optimization resulted in a 6.83-fold increase in xylanase production compared to that of the initial medium. Best xylanase activity was observed at the temperature of 50°C and at pH 8.0. The enzyme retained more 96% of its activity after 24h at pH ranges from 7.0 to 90.0. The enzyme preserved more 80% of its initial activity after 60min of pre-incubation from 30°C to 60°C. The main hydrolysis products yielded from corncob extracted xylan were xylobiose and xylotriose, suggesting the good potential of strain A21 in xylooligosaccharides production.  相似文献   

3.
With the objective of the production of xylanase, local raw material (rice husk) and the indigenous isolate, Aspergillus niger ITCC 7678, were studied. Optimization of the cultivation system for enhancing xylanase production was studied via submerged fermentation. Statistical procedures were employed to study the effect of process variables, such as alkali-pretreated rice husk (as carbon source), NaNO3 (as nitrogen source), KH2PO4, KCl, Tween 80 (as surfactant), MgSO4, FeSO4·7H2O, pH, particle size, agitation, and temperature, on xylanase production by A. niger. The effect and significance of the variables was studied using Plackett–Burman (PBD) and central composite statistical design (CCD). It was found that alkali pretreated rice husk (weight/volume), pH, temperature, and NaNO3 significantly influence xylanase production. So, these four factors were further optimized by CCD, and it was found that maximum xylanase activity of 10.9 IU/ml was observed at (6.5 % w/v) rice husk, pH (5.5), temperature (32.5 °C), and NaNO3 (0.35 % w/v) concentration. Under optimum conditions, xylanase production was also studied at the bioreactor level and showed 12.8 % enhanced xylanase activity.  相似文献   

4.
In this study, different Trichoderma strains were tested and Trichoderma harzianum 1073 D3 was found to be the most potent xylanase producer. Then some cultural parameters, namely, incubation time, substrate concentration, initial culture pH and temperature were optimized in order to increase xylanase production from Trichoderma harzianum 1073 D3. The optimum incubation time was found to be 13 days. It was concluded that 1% xylan concentration is suitable for high xylanase production rate. The optimum temperature and pH were found to be 30 degrees C and 7, respectively. Also, it was determined that agitation during growth was suitable for efficient production.  相似文献   

5.
Thermomyces lanuginosus, isolated from self-heated jute stacks in Bangladesh, was studied for production of high level of cellulase-free thermostable xylanase at 50°C using xylan. Optimization of the medium composition was carried out on shake-flask level using Graeco-Latin square technique. This increased xylanase production from 527 nkat ml−1 in the original medium to 9168–9502 nkat ml−1 in the optimized medium under optimized culture conditions e.g. initial medium pH (6.0–6.5), culture temperature (50°C) and time (5–6 d). The lag phase was very much shorter in the laboratory reactor compared to which existed in the shake cultures and 7111 nkat of xylanase activity were obtained per ml of culture filtrate at 60 h of cultivation. With a 15 min reaction time, the optimal pH and temperature for the xylanase activity were at 6.5 and 65°C, respectively. The enzyme was almost stable over a broad range of pH 3–9 at 20°C, with an optimum stability at pH 6.5. After 51 h heating at 50°C the enzyme retained 60%, 100% and 90% activity at pH 5.0, 6.5 and 8.0, respectively. The crude enzyme could hydrolyse xylan effectively and in only 6 h 67.3%, 54.0% and 49.2% saccharifications were achieved for 2%, 5% and 10% substrate levels, respectively. The principal product of hydrolysis was xylobiose together with smaller amounts of xylooligosaccharides (degree of polymerization 3–7) and xylose.  相似文献   

6.
Recombinant Escherichia coli (pATBX 1.8) secreting extracellular xylanase was used as a model system to study the application of an aqueous two phase system for extractive cultivation. An increase in the polymer concentrations from 6 to 20% in the polyethylene glycol phosphate aqueous two phase system resulted in an increase in the phase volume ratio with a concomitant decrease in the partition coefficient (K) and recovery of xylanase in the top phase. However, varying phosphate concentrations from 8 to 16% decreased both the phase volume ratio and the partition coefficient of xylanase. The polyethylene glycol (6%) and phosphate (12%) system was found to be optimum for extracellular cultivation of E. coli, where extracellular xylanase was selectively partitioned to the top phase giving a purification ratio of above 1.0. The process was extended to a semicontinuous operating mode at the optimal condition, wherein the top phase containing xylanase was recovered and the surviving cells were recycled together with the new top phase. The maximum recovery of xylanase was obtained after 12 h in the top phase with a twofold increase in the specific activity as compared to the one obtained in the reference fermentation. In the present work, we report for the first time the use of the two phase system for the extractive cultivation of recombinant E. coli (pATBX 1.8) with the purpose of obtaining a simple and inexpensive separation procedure and achieving the maximal extraction of xylanase to one phase.  相似文献   

7.
The effects of cultivation pH and agitation rate on growth and extracellular xylanase production by Aspergillus oryzae NRRL 3485 were investigated in bioreactor cultures using spent sulphite liquor (SSL) and oats spelts xylan as respective carbon substrates. Xylanase production by this fungus was greatly affected by the culture pH, with pH 7.5 resulting in a high extracellular xylanase activity in the SSL-based medium as well as in a complex medium with xylan as carbon substrate. This effect, therefore, was not solely due to growth inhibition at the lower pH values by the acetic acid in the SSL. The xylanase activity in the SSL medium peaked at 199 U ml(-1) at pH 7.5 with a corresponding maximum specific growth rate of 0.39 h(-1). By contrast, the maximum extracellular beta-xylosidase activity pf 0.36 U ml(-1) was recorded at pH 4.0. Three low molecular weight xylanase isozymes were secreted at all pH values within the range of pH 4-8, whereas cellulase activity on both carbon substrates was negligible. Impeller tip velocities within the range of 1.56-3.12 m s(-1) had no marked effect, either on the xylanase activity, or on the maximum volumetric rate of xylanase production. These results also demonstrated that SSL constituted a suitable carbon feedstock as well as inducer for xylanase production in aerobic submerged culture by this strain of A. oryzae.  相似文献   

8.
[目的] 研究樟绒枝霉(Malbranchea cinnamomea) CAU521利用农业废弃物固体发酵产木聚糖酶的发酵条件.[方法]采用单因素试验法优化影响菌株产酶的各个条件,包括碳源种类、氮源种类、初始pH、初始水分含量、培养温度及发酵时间共6个因素.[结果]获得的最佳产酶条件为:稻草为发酵碳源、2%(W/W)的酵母提取物为氮源、初始pH 7.0、初始水分含量80%和发酵温度45℃.在此条件下发酵6d后木聚糖酶的酶活力达到13 120 U/g干基碳源.[结论]樟绒枝霉固体发酵产木聚糖酶的产酶水平高,生产成本低,具有潜在的工业化应用前景.  相似文献   

9.
Nitrilases constitute an important class of hydrolases, having numerous industrial applications. The present work aims to address the production of nitrile hydrolyzing enzymes from Pseudomonas putida MTCC 5110 in a 6l bioreactor. Effect of various physico-chemical conditions and process parameters like pH, temperature, aeration and agitation rates and inducer concentration was studied. Further, the enzyme activity was enhanced by adopting the inducer feeding strategy. Various biochemical engineering parameters pertaining to the cultivation of P. putida in different physico-chemical conditions were reported. Finally, segregation of growth phase from the enzyme production phase allowed significant reduction in total fermentation time.  相似文献   

10.
Formation of extracellular xylanase was studied in 10 strains of wood-destroying fungi belonging to Basidiomycetes during their submerged cultivation with willow sawdust. The highest enzyme activity was found in the fungus Trametes hirsuta (Wulf.) Pilát. The effect of sources of carbon and nitrogen, cultivation time and initial pH of the cultivation solution on the formation of xylanase by the fungus Trametes hirsuta was investigated. The highest production of the enzyme was reached during cultivation in the presence of willow sawdust, asparagine and at the initial pH of 5.0. The presence of xylanase, cellulase, mannanase and amylase as well as of beta-xylosidase, beta-glucosidase, beta-mannosidase and beta-galactosidase was demonstrated in the enzyme preparation obtained after a 10-day submerged cultivation of Trametes hirsuta under optimal conditions.  相似文献   

11.
Shake-flask cultivation of T. lanuginosus strain SSBP on coarse corn cobs yielded β-xylanase levels of 56,500 nkat/ml at 50 °C, whereas other hemicellulases (β-xylosidase, β-glucosidase, and α-l-arabinofuranosidase) were produced at levels less than 7 nkat/ml. Cultivation on d-xylose yielded much lower levels of xylanase (350 nkat/ml), although other hemicellulase levels were similar to those produced on corn cobs. The influence of agitation rate and dissolved oxygen tension (DOT) on hemicellulase production was studied further in a bioreactor. On xylose, xylanase activities of 4,330 nkat/ml and 4,900 nkat/ml were obtained at stirrer speeds up to 1,400 rpm to control DOT. At a constant stirrer speed of 400 rpm, xylanase activities of 10,930 nkat/ml and 15,630 nkat/ml were obtained when cultivated on xylose and beechwood xylan respectively, despite DOT levels below 5% for the duration of fermentation. The results indicate that there is an interaction between agitation rate and DOT, impacting on xylanase and accessory enzyme production. Higher agitation rates favoured the production of xylosidase, arabinofuranosidase and glucosidase by T. lanuginosus strain SSBP, whereas the lower agitation rates favoured xylanase production. Rheological difficulties precluded cultivation on corn cobs in the bioreactor. Volumetric xylanase productivities of 1,060,000 nkat/l · h and 589,000 nkat/l · h obtained on beechwood xylan and xylose indicate that T. lanuginosus strain SSBP is a hyper-xylanase producer with considerable industrial potential. Received: 5 May 1999 / Received revision: 31 May 2000 / Accepted: 3 June 2000  相似文献   

12.
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box–Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD600nm) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.  相似文献   

13.
考察纳豆杆菌在7.5 L发酵罐中分批发酵产纳豆激酶的条件,纳豆激酶酶活采用四肽底物测定。结果表明:纳豆杆菌生长和产酶的适宜条件不一致。发酵过程中发酵罐搅拌转速控制为500 r/min不变,0~12 h时控制pH为8.0、温度为37℃;12~36 h调整pH为7.0、温度为30℃;16 h时补加外源C源,连续发酵36 h。该过程中发酵液中比酶活最高达到3 232 U/mL,与摇瓶发酵相比,比酶活提高了58%。  相似文献   

14.
A xylanase was removed from crude extract of the fungus Penicillium janthinellum under optimized conditions: 0.10M phosphate buffer, pH 7.0, 0.2 M BDBAC (N-benzyl-N-dodeceyl-N-bis (2-hydroxyethyl) ammonium chloride), 7.5% hexanole, 30°C and an agitation time of 1 minute. At 1.42 mg per ml protein concentration, 73% of the xylanase activity was recovered and a 7-fold enrichment factor was obtained. The enzyme had a molecular weight (MW) of 20.1 kDa and the isoelectric point (PI) revealed the presence of two protein bands with a PI of 6.0 and 6.5. The optimum pH and optimum temperature were 4.2 and 50°C, respectively. The low pH differential between the aqueous medium and the protein PI seemed to influence the xylanase transportation into the reversed micelles.  相似文献   

15.
The initial moisture content, cultivation time, inoculum size and concentration of basal medium were optimized in solid state fermentation (SSF) for the production of xylanase by an Aspergillus niger mutant using statistical experimental designs. The cultivation time and concentration of basal medium were the most important factors affecting xylanase activity. An inoculum size of 5 x 10(5) spores/g, initial moisture content of 65%, cultivation time of 5 days and 10 times concentration of basal medium containing 50 times concentration of corn steep liquor were optimum for xylanase production in SSF. Under the optimized conditions, the activity and productivity of xylanase obtained after 5 days of fermentation were 5,071 IU/g of rice straw and 14,790 IU l(-1) h(-1), respectively. The xylanase activity predicted by a polynomial model was 5,484 IU/g of rice straw.  相似文献   

16.
Cellulase-free xylanase production by T. lanuginosus MH4 was investigated in a 3-litre stirred tank bioreactor under different agitation rates and an aeration rate of 1v/v/m. The cultivation time in the bioreactor was reduced significantly over that in shake culture conditions. A xylanase productivity of 0.1 mkat1–1h–1 was achieved on xylan in the bioreactor. This was nearly double to that obtained in shake culture. The agitation rates influenced both growth and enzyme secretion in the bioreactor. The highest level of biomass concentration and activities of both xylanase and -xylosidase were obtained at 150 revmin–1  相似文献   

17.
Cui  Fengjie  Li  Yin  Liu  Zhiqiang  Zhao  Hui  Ping  Lifeng  Ping  Liying  Yang  Yinan  Xue  Yaping  Yan  Lijiao 《World journal of microbiology & biotechnology》2009,25(4):721-725
The objective of this study was to maximize production of xylanase by a newly isolated strain Penicillium thiersii ZH-19. Response surface methodology was employed to study the effects of significant factors such as pH, temperature, xylan concentration, and cultivation time, on the production of xylanase by Penicillium thiersii ZH-19. The optimal fermentation parameters for enhanced xylanase production were found to be pH 7.72, temperature 24.8°C, xylan 13.2 g l−1 and the fermentation time 125.8 h. The model predicted a xylanase activity of 75.24 U ml−1. Verification of the optimization showed that the maximum xylanase production reached 73.50 U mL−1 in the flask experiments and 80.23 U mL−1 in the scale of 15-L fermenter under the optimal condition.  相似文献   

18.
Optimization of enzyme production from Aspergillus niger ATCC 6275 under both submerged and solid-substrate cultivation was investigated. Results from submerged cultivation using palm oil mill effluent revealed that pretreatment of ground palm cake did not improve enzyme production. Addition of 0.60g NH4NO3/l generated maximum activity of xylanase and cellulase (CMCase). The optimum aeration rate was 1.2 v/v min. Under solid-substrate cultivation, the results indicated that heating and alkali treatment of the ground palm cake gave no further improvement in enzyme production. The optimal N-source was 2% urea. Optimal initial moisture contents for xylanase and CMCase activities were 60% and 50% respectively, with temperature optima of 30°C and 35°C, respectively. The optimal inoculum size was 1× 108 spores/g palm cake with an initial pH of 4.5–5.0. The maximum activities of xylanase (282.9U/g) and CMCase (23.8U/g) were obtained under the optimum conditions. Solid-substrate cultivation was a better method for the production of enzyme, particularly xylanase, from A. niger ATCC 6275. The application of these enzymes to decanter effluent showed the separation of oil and grease and suspended solids from the effluent. This is comparable to the result achieved from using the commercial xylase preparation Meicelase and superior to the effect of Sumyzyme.  相似文献   

19.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

20.
Summary Aspergillus niger, strain 110.42 (CBS), has been selected as a producer of high xylanolytic activities. The time course of xylanase and -xylosidase production as well as the effect of pH and temperature on the activity of these enzymes were studied. HPLC analysis of the enzymatic degradation of arabinoxylan showed a nearly complete conversion to pentose sugars. Aspects of using crude xylanase preparations for enzymatic saccharification of xylans are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号