首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a single object lies in front of or beyond the plane of fixation its retinal image lies on disparate positions in the two eyes. This 'local' retinal disparity is an excellent cue to depth, and retinal disparties of a few seconds of arc are detectable by people and monkeys. However, most visual scenes produce a complex array of contours in each eye and we can detect the disparity in the arrays despite the ambiguous nature of the disparities, i.e. each contour in one eye could be related to any of several similar contours in the other eye. This ability, known as 'global' stereopsis, may be selectively impaired following brain damage in man. Global stereopsis was measured in rhesus monkeys before and after removing a different cortical visual area in different groups of animals. Only removal of the inferotemporal cortex impaired global stereopsis. The result is related to the findings with human patients and to receptive field properties of neurons in the inferotemporal cortex of monkeys.  相似文献   

2.
In the cat, parallel streams of information processing have been traced from X-, Y- and W-type retinal ganglion cells to visual cortical areas 17 (X-, Y- and W-type), 18 (Y-type) and 19 (W-type). In the present study we have examined, in the anaesthetized and paralysed adult cat, the role played by X-, Y- and W-subsystems, projecting to areas 17 and 19, in the processing of binocular retinal disparity. The tapetal reflection technique was used to monitor residual eye movements and to provide a map, for each eye, of the retinal blood vessels which could later be compared with retinal wholemounts stained with cresyl violet to reveal the area centralis. The receptive-field disparities of cells recorded from areas 17 and 19 were compared with each other and with reference to the visual axes defined by the area centralis of each eye. Cells of area 19 (receiving W-type input) had horizontal receptive-field disparities that were significantly more divergent than those of the cells in area 17 and 17-18 'border region'. Referred to the area centralis, the mean horizontal receptive-field disparity in area 19 was -0.5 degrees (+/- 0.8 degrees). The mean horizontal receptive-field disparity of area 17 (receiving X-, Y- and W-type input) was convergent with respect to the visual axis at +2 degrees (+/- 0.5 degrees). Finally, the mean horizontal receptive-field disparity of the cells in the 17-18 border region (which receive mainly Y-type input) was even more convergent (2.6 degrees +/- 1.5 degrees) than that of area 17. Binocular interactions of cortical neurons were tested with the Risley biprism technique. Area 19 cells had maximal responses to binocular stimulation when the receptive-field disparities were either close to zero or slightly divergent. In contrast, area 17 cells tended to respond optimally to disparities that were either slightly or strongly convergent. At the level of the lateral geniculate nucleus there were significant differences between the receptive-field disparities inferred from the comparison of receptive-field positions of adjacent neurons recorded on either side of the border between the A and A1 geniculate laminae and those inferred from a similar comparison at the C1-C2 border. The mean horizontal disparities inferred from the interlaminar comparison at the A-A1 border were +2.1 degrees (+/- 0.3 degrees); those inferred from the interlaminar comparison at the C1-C2 border -0.2 (+/- 0.2 degrees) were more divergent.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Gaze following in human infants depends on communicative signals   总被引:1,自引:0,他引:1  
Humans are extremely sensitive to ostensive signals, like eye contact or having their name called, that indicate someone's communicative intention toward them [1-3]. Infants also pay attention to these signals [4-6], but it is unknown whether they appreciate their significance in the initiation of communicative acts. In two experiments, we employed video presentation of an actor turning toward one of two objects and recorded infants' gaze-following behavior [7-13] with eye-tracking techniques [11, 12]. We found that 6-month-old infants followed the adult's gaze (a potential communicative-referential signal) toward an object only when such an act is preceded by ostensive cues such as direct gaze (experiment 1) and infant-directed speech (experiment 2). Such a link between the presence of ostensive signals and gaze following suggests that this behavior serves a functional role in assisting infants to effectively respond to referential communication directed to them. Whereas gaze following in many nonhuman species supports social information gathering [14-18], in humans it initially appears to reflect the expectation of a more active, communicative role from the information source.  相似文献   

4.
In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves.  相似文献   

5.

Background

Inhaled nitric oxide (iNO) reduces death or need for extracorporeal membrane oxygenation (ECMO) in infants with persistent pulmonary hypertension of the newborn (PPHN). However, the response to iNO is variable and only 50–60% of infants demonstrate a response to iNO. It is not known why only some infants respond to iNO. Adults and children with blood groups B or AB do not respond as well to iNO as those with blood groups O/A.

Methods/Principal Findings

To determine if blood group was associated with iNO response in newborn infants, a retrospective medical record review was done of infants admitted to a regional NICU from 2002-9 with a diagnosis of PPHN. Data were collected during the first twelve hours post-initiation of treatment. Of 86 infants diagnosed with PPHN, 23 infants had blood group A [18 received iNO], 21 had group B [18 with iNO], 40 had group O [36 with iNO], and 2 had group AB [both received iNO]. Change in PaO2/FiO2 was less in infants with blood group A, of whom less than half were responders (ΔPaO2/FiO2>20%) at 12 h versus 90% of infants with either O or B. Race, sex, birth weight, gestational age, Apgar scores at 1 and 5 minutes, and baseline PaO2/FiO2 were similar among groups. Outcomes including need for ECMO, death, length of ventilatory support, length of iNO use, and hospital stay were statistically not different by blood groups.

Conclusions/Significance

Our results indicate that blood group influences iNO response in neonates. We hypothesize that either there is genetic linkage of the ABO gene locus with vasoregulatory genes, or that blood group antigens directly affect vascular reactivity.  相似文献   

6.
Autism spectrum disorders (henceforth autism) are diagnosed in around 1% of the population [1]. Familial liability confers risk for a broad spectrum of difficulties including the broader autism phenotype (BAP) [2, 3]. There are currently no reliable predictors of autism in infancy, but characteristic behaviors emerge during the second year, enabling diagnosis after this age [4, 5]. Because indicators of brain functioning may be sensitive predictors, and atypical eye contact is characteristic of the syndrome [6-9] and the BAP [10, 11], we examined whether neural sensitivity to eye gaze during infancy is associated with later autism outcomes [12, 13]. We undertook a prospective longitudinal study of infants with and without familial risk for autism. At 6-10 months, we recorded infants' event-related potentials (ERPs) in response to viewing faces with eye gaze directed toward versus away from the infant [14]. Longitudinal analyses showed that characteristics of ERP components evoked in response to dynamic eye gaze shifts during infancy were associated with autism diagnosed at 36 months. ERP responses to eye gaze may help characterize developmental processes that lead to later emerging autism. Findings also elucidate the mechanisms driving the development of the social brain in infancy.  相似文献   

7.
We investigated the neural mechanisms underlying visual localization in 3-D space in area V1 of behaving monkeys. Three different sources of information, retinal disparity, viewing distance and gaze direction, that participate in these neural mechanisms are being reviewed. The way they interact with each other is studied by combining retinal and extraretinal signals. Interactions between retinal disparity and viewing distance have been shown in foveal V1; we have observed a strong modulation of the spontaneous activity and of the visual response of most V1 cells that was highly correlated with the vergence angle. As a consequence of these gain effects, neural horizontal disparity coding is favoured or refined for particular distances of fixation. Changing the gaze direction in the fronto-parallel plane also produces strong gains in the visual response of half of the cells in foveal V1. Cells tested for horizontal disparity and orientation selectivities show gain effects that occur coherently for the same spatial coordinates of the eyes. Shifts in preferred disparity also occurred in several neurons. Cells tested in calcarine V1 at retinal eccentricities larger than 10 degrees , show that horizontal disparity is encoded at least up to 20 degrees around both the horizontal and vertical meridians. At these large retinal eccentricities we found that vertical disparity is also encoded with tuning profiles similar to those of horizontal disparity coding. Combinations of horizontal and vertical disparity signals show that most cells encode both properties. In fact the expression of horizontal disparity coding depends on the vertical disparity signals that produce strong gain effects and frequent changes in peak selectivities. We conclude that the vertical disparity signal and the eye position signal serve to disambiguate the horizontal disparity signal to provide information on 3-D spatial coordinates in terms of distance, gaze direction and retinal eccentricity. We suggest that the relative weight among these different signals is the determining factor involved in the neural processing that gives information on 3-D spatial localization.  相似文献   

8.
根据心理物理实验和电生理实验的结果,选用对非零视差有选择性反应的视差敏感复杂细胞来检测视差信息,并把所提取的视差信息直接投射到聚散式眼动细胞(vergencecel)以控制聚散式眼动。同时,综合考虑了复杂细胞编码范围的限制、近细胞和远细胞的相位关系以及跳跃式眼动后增强效应(post-saccadicenhancement)等因素。得到的模拟结果与心理物理实验结果定性地符合  相似文献   

9.
10.
Recent evidence suggests that preverbal infants' gaze following can be triggered only if an actor's head turn is preceded by the expression of communicative intent [1]. Such connectedness between ostensive and referential signals may be uniquely human, enabling infants to effectively respond to referential communication directed to them. In the light of increasing evidence of dogs' social communicative skills [2], an intriguing question is whether dogs' responsiveness to human directional gestures [3] is associated with the situational context in an infant-like manner. Borrowing a method used in infant studies [1], dogs watched video presentations of a human actor turning toward one of two objects, and their eye-gaze patterns were recorded with an eye tracker. Results show a higher tendency of gaze following in dogs when the human's head turning was preceded by the expression of communicative intent (direct gaze, addressing). This is the first evidence to show that (1) eye-tracking techniques can be used for studying dogs' social skills and (2) the exploitation of human gaze cues depends on the communicatively relevant pattern of ostensive and referential signals in dogs. Our findings give further support to the existence of a functionally infant-analog social competence in this species.  相似文献   

11.
Alarm calls can code for different classes of predators or different types of predatory threat. Acoustic information can also encode the urgency of threat through variations in acoustic features within specific alarm call types. Squirrel monkeys (Saimiri sciureus) produce an alarm call, known as the alarm peep, in highly threatening situations. Infant squirrel monkeys appear to have an innate predisposition to respond to alarm peeps but require experience to associate alarm peeps with the appropriate type of predatory threat [Herzog & Hopf, American Journal of Primatology 7:99-106, 1984]. Little is known about age-related differences in the type or frequency of response to alarm peeps, or the development of alarm peep response in infants. The purpose of this study was to test experimentally the response strategies of different age classes of squirrel monkey to the playback of alarm peeps that were produced by infants, juveniles, or adults. Results suggest that infants, juveniles, and female subadults respond more frequently to alarm peeps than do adult females. Infant squirrel monkeys showed different behavioral strategies in response to alarm peeps as a function of age. Adult females differentiate between infant and adult alarm peeps by responding more frequently to the alarm peeps of adult females. These data demonstrate that squirrel monkeys use acoustic information to discern when to respond to the alarm peeps from conspecifics, and that infants gradually develop an adult-like response to alarm peeps over the first year of development.  相似文献   

12.
In most respects, the response properties of cells in the secondary visual cortex of the newborn lamb were indistinguishable from those in the adult. The cells were sharply selective to orientation; the orientation preferences were the same in each eye, and they varied systematically as the electrode penetrated the cortex. The receptive-field organization did not differ noticeably from that in adults, and complex, hypercomplex, and a few simple cells were all observed. The ocular dominance distribution was similar to that in the adult. Most importantly, binocular cells were found with disparate receptive fields even in newborn, visually inexperienced animals. As in the adult, the disparities were largely horizontal, and they appeared to be arranged in columns. Many of the cells responded preferentially to a binocular stimulus at a particular disparity setting (often approximately zero), but unlike those in the adult almost all the binocular cells in the newborn lamb would also respond monocularly, and the enhancement at the optimal disparity was less than in the adult. The full development of binocular selectivity took several weeks, and was blocked by binocular deprivation. We conclude that the basic wiring of stereoscopic mechanisms is innate, but the development of mature binocular interaction may depend on an adaptive process which makes use of the visual information received during binocular stimulation.  相似文献   

13.
Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell''s preferred orientation. Because of this, even if a neuron''s optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations.  相似文献   

14.
 The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345–3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broad-band anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system – stereopsis and motion – has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with anti-correlated stimuli, in accordance with human psychophysics. Thus, the key features of the experimental data can be reproduced assuming that the motion system experiences more effective noise than the stereoscopy system and imposes a less stringent preference for small disparities. Received: 2 March 2001 / Accepted in revised form: 5 July 2001  相似文献   

15.
Saccadic adaptation [1] is a powerful experimental paradigm to probe the mechanisms of eye movement control and spatial vision, in which saccadic amplitudes change in response to false visual feedback. The adaptation occurs primarily in the motor system [2, 3], but there is also evidence for visual adaptation, depending on the size and the permanence of the postsaccadic error [4-7]. Here we confirm that adaptation has a strong visual component and show that the visual component of the adaptation is spatially selective in external, not retinal coordinates. Subjects performed?a memory-guided, double-saccade, outward-adaptation task designed to maximize visual adaptation and to dissociate the visual and motor corrections. When the memorized saccadic target was in the same position (in external space) as that used in the adaptation training, saccade targeting was strongly influenced by adaptation (even if not matched in retinal or cranial position), but when in the same retinal or cranial but different external spatial position, targeting was unaffected by adaptation, demonstrating unequivocal spatiotopic selectivity. These results point to the existence of a spatiotopic neural representation for eye movement control that adapts in response to saccade error signals.  相似文献   

16.
When and how infants begin to discriminate noxious from innocuous stimuli is a fundamental question in neuroscience [1]. However, little is known about the development of the necessary cortical somatosensory functional prerequisites in the intact human brain. Recent studies of developing brain networks have emphasized the importance of transient spontaneous and evoked neuronal bursting activity in the formation of functional circuits [2, 3]. These neuronal bursts are present during development and precede the onset of sensory functions [4, 5]. Their disappearance and the emergence of more adult-like activity are therefore thought to signal the maturation of functional brain circuitry [2, 4]. Here we show the changing patterns of neuronal activity that underlie the onset of nociception and touch discrimination in the preterm infant. We have conducted noninvasive electroencephalogram (EEG) recording of the brain neuronal activity in response to time-locked touches and clinically essential noxious lances of the heel in infants aged 28-45?weeks gestation. We show a transition in brain response following tactile and noxious stimulation from nonspecific, evenly dispersed neuronal bursts to modality-specific, localized, evoked potentials. The results suggest that specific neural circuits necessary for discrimination between touch and nociception emerge from 35-37?weeks gestation in the human brain.  相似文献   

17.
Stereo "3D" depth perception requires the visual system to extract binocular disparities between the two eyes' images. Several current models of this process, based on the known physiology of primary visual cortex (V1), do this by computing a piecewise-frontoparallel local cross-correlation between the left and right eye's images. The size of the "window" within which detectors examine the local cross-correlation corresponds to the receptive field size of V1 neurons. This basic model has successfully captured many aspects of human depth perception. In particular, it accounts for the low human stereoresolution for sinusoidal depth corrugations, suggesting that the limit on stereoresolution may be set in primary visual cortex. An important feature of the model, reflecting a key property of V1 neurons, is that the initial disparity encoding is performed by detectors tuned to locally uniform patches of disparity. Such detectors respond better to square-wave depth corrugations, since these are locally flat, than to sinusoidal corrugations which are slanted almost everywhere. Consequently, for any given window size, current models predict better performance for square-wave disparity corrugations than for sine-wave corrugations at high amplitudes. We have recently shown that this prediction is not borne out: humans perform no better with square-wave than with sine-wave corrugations, even at high amplitudes. The failure of this prediction raised the question of whether stereoresolution may actually be set at later stages of cortical processing, perhaps involving neurons tuned to disparity slant or curvature. Here we extend the local cross-correlation model to include existing physiological and psychophysical evidence indicating that larger disparities are detected by neurons with larger receptive fields (a size/disparity correlation). We show that this simple modification succeeds in reconciling the model with human results, confirming that stereoresolution for disparity gratings may indeed be limited by the size of receptive fields in primary visual cortex.  相似文献   

18.
Flies generate robust and high-performance olfactory and visual behaviors. Adult fruit flies can distinguish small differences in odor concentration across antennae separated by less than 1 mm [1], and a single olfactory sensory neuron is sufficient for near-normal gradient tracking in larvae [2]. During flight a male housefly chasing a female executes a corrective turn within 40 ms after a course deviation by its target [3]. The challenges imposed by flying apparently benefit from the tight integration of unimodal sensory cues. Crossmodal interactions reduce the discrimination threshold for unimodal memory retrieval by enhancing stimulus salience [4], and dynamic crossmodal processing is required for odor search during free flight because animals fail to locate an odor source in the absence of rich visual feedback [5]. The visual requirements for odor localization are unknown. We tethered a hungry fly in a magnetic field, allowing it to yaw freely, presented odor plumes, and examined how visual cues influence odor tracking. We show that flies are unable to use a small-field object or landmark to assist plume tracking, whereas odor activates wide-field optomotor course control to enable accurate orientation toward an attractive food odor.  相似文献   

19.
Electrophysiological recording in primary visual cortex (VI) was performed both prior to and in the hours immediately following the creation of a discrete retinal lesion in one eye with an argon laser. Lesion projection zones (LPZs; 21-64 mm2) were defined in the visual cortex by mapping the extent of the lesion onto the topographic representation in cortex. There was no effect on neuronal responses to the unlesioned eye or on its topographic representation. However, within hours of producing the retinal lesion, receptive fields obtained from stimulation of the lesioned eye were displaced onto areas surrounding the scotoma and were enlarged compared with the corresponding field obtained through the normal eye. The proportion of such responsive recording sites increased during the experiment such that 8-11 hours post-lesion, 56% of recording sites displayed neurons responsive to the lesioned eye. This is an equivalent proportion to that previously reported with long-term recovery (three weeks to three months). Responsive neurons were evident as far as 2.5 mm inside the border of the LPZ. The reorganization of the lesioned eye representation produced binocular disparities as great as 15 degrees, suggesting interactions between sites in VI up to 5.5 mm apart.  相似文献   

20.
When predicting financial profits [1], relationship outcomes [2], longevity [3], or professional success [4], people habitually underestimate the likelihood of future negative events (for review see [5]). This well-known bias, termed unrealistic optimism [6], is observed across age [7], culture [8], and species [9] and has a significant societal impact on domains ranging from financial markets to health and well being. However, it is unknown how neuromodulatory systems impact on the generation of optimistically biased beliefs. This question assumes great importance in light of evidence that common neuropsychiatric disorders, such as depression, are characterized by pessimism [10, 11]. Here, we show that administration of a drug that enhances dopaminergic function (dihydroxy-L-phenylalanine; L-DOPA) increases an optimism bias. This effect is due to L-DOPA impairing the ability to update belief in response to undesirable information about the future. These findings provide the?first evidence that the neuromodulator dopamine impacts on belief formation by reducing negative expectations regarding the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号