首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review focuses on recent advances in our understanding of how neural divergence and convergence give rise to complex encoding properties of retinal ganglion cells. We describe the apparent mismatch between the number of cone bipolar cell types, and the diversity of excitatory input to retinal ganglion cells, and outline two possible solutions. One proposal is for diversity in the excitatory pathways to be generated within axon terminals of cone bipolar cells, and the second invokes narrow-field glycinergic amacrine cells that can apparently act like bipolar cells by providing excitatory drive to ganglion cells. Finally we highlight two advances in technique that promise to provide future insights; automation of electron microscope data collection and analysis, and the use of the ideal observer to quantitatively compare neural performance at all levels.  相似文献   

2.
Neuronal response to single stimuli applied to the thalamic dorsolateral and posterolateral nuclei (DLN and PLN resepctively) was investigated in the parietal association cortex. Primary IPSP following DLN and PLN stimulation was noted in 62.5% and 79.6% of instances respectively. Latencies of EPSP and IPSP when stimulating the two nuclei were longer for the DLN. The amplitude of EPSP evoked by stimulating association nuclei rose and declined smoothly, while that of IPSP showed a fast rise and a more steady decline. The EPSP appearing during the evolution of IPSP were of higher amplitude than control level of resting potential. Both amplitude and duration of IPSP induced in a single unit by stimulating different association nuclei were extremely similar, thus confirming the involvement in this operation of the same inhibitory cortical interneurons. Duration of IPSP was shorter than that of inhibitory background spike activity. It is postulated that the discrepancy in duration can largely be ascribed to properties of the neurons themselves.State University, Odessa. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 529–536, September–October, 1991.  相似文献   

3.
4.
5.
6.
We analyzed the slow negative wave appearing in the optic cortex of the rabbit after a single afferent irritation and the specific "enhancing" response developing after subsequent repeated stimulations of the subcortical white matter. The first type of reaction is accompanied by recurrent inhibition of cortical neurons, the second by recurrent excitation. It is assumed that the optic cortex contains well developed both excitatory and inhibitory recurrent links.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 418–422, July–August, 1970.  相似文献   

7.
Image processing techniques are described in detail that are used to gain information about the dynamics of wave propagation in excitable media. We focus on a phenomenon called spreading depression (SD) observed in the chicken retina, but the techniques described here concern a large variety of excitable systems. Despite the impressive progress both in SD research of the past 50 years and, during nearly the same period, in the theory of self-organization of wave patterns, there is still little mutual overlap. However, the increasing demands for understanding complex systems, like neuronal tissue, require such theoretical concepts. Arguments are given why the chicken retina is a nearly perfect experimental system for assessing and further developing these concepts.  相似文献   

8.
Two independent types of lateral inhibition were distinguished in experiments on the frog eye in which the effects of pharmacological agents on the electroretinogram were studied: proximal or picrotoxin-sensitive, and distal or strychnine-sensitive. Distal lateral inhibition (at distances up to 1.5 mm) is the familiar type already well investigated and based on a spike mechanism of transmission of the inhibitory signal. The proximal (up to 400 µ) picrotoxin-sensitive inhibition has a different mechanism of transmission, not dependent on spikes. The localization of the two types of lateral inhibition in the synaptic layers of the frog retina is discussed.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 549–555, September–October, 1981.  相似文献   

9.
10.
11.
12.
13.
14.
Predictive coding: a fresh view of inhibition in the retina   总被引:9,自引:0,他引:9  
Interneurons exhibiting centre--surround antagonism within their receptive fields are commonly found in peripheral visual pathways. We propose that this organization enables the visual system to encode spatial detail in a manner that minimizes the deleterious effects of intrinsic noise, by exploiting the spatial correlation that exists within natural scenes. The antagonistic surround takes a weighted mean of the signals in neighbouring receptors to generate a statistical prediction of the signal at the centre. The predicted value is subtracted from the actual centre signal, thus minimizing the range of outputs transmitted by the centre. In this way the entire dynamic range of the interneuron can be devoted to encoding a small range of intensities, thus rendering fine detail detectable against intrinsic noise injected at later stages in processing. This predictive encoding scheme also reduces spatial redundancy, thereby enabling the array of interneurons to transmit a larger number of distinguishable images, taking into account the expected structure of the visual world. The profile of the required inhibitory field is derived from statistical estimation theory. This profile depends strongly upon the signal: noise ratio and weakly upon the extent of lateral spatial correlation. The receptive fields that are quantitatively predicted by the theory resemble those of X-type retinal ganglion cells and show that the inhibitory surround should become weaker and more diffuse at low intensities. The latter property is unequivocally demonstrated in the first-order interneurons of the fly's compound eye. The theory is extended to the time domain to account for the phasic responses of fly interneurons. These comparisons suggest that, in the early stages of processing, the visual system is concerned primarily with coding the visual image to protect against subsequent intrinsic noise, rather than with reconstructing the scene or extracting specific features from it. The treatment emphasizes that a neuron's dynamic range should be matched to both its receptive field and the statistical properties of the visual pattern expected within this field. Finally, the analysis is synthetic because it is an extension of the background suppression hypothesis (Barlow & Levick 1976), satisfies the redundancy reduction hypothesis (Barlow 1961 a, b) and is equivalent to deblurring under certain conditions (Ratliff 1965).  相似文献   

15.
16.
17.
Some relations between the temporally macroscopic theory of central excitation and inhibition and the temporally microscopic theory of nervous nets are suggested.  相似文献   

18.
19.
Spinal excitation and inhibition decrease as humans age   总被引:7,自引:0,他引:7  
Although changes in the soleus H-reflex (an electrical analog of the tendon jerk) with age have been examined in a number of studies, some controversy remains. Also, the effect of age on inhibitory reflexes has received little attention. The purpose of this paper was to examine some excitatory and inhibitory reflexes systematically in healthy human subjects having a wide range of ages. We confirmed that both the maximum H-reflex (Hmax) and the maximum M-wave (Mmax) (from direct stimulation of motor axons) decrease gradually with age. The decrease in Hmax was larger so the Hmax/Mmax ratio decreased dramatically with age. Interestingly, the modulation of the H-reflex during walking was essentially the same at all ages, suggesting that the pathways that modulate the H-reflex amplitude during walking are relatively well preserved during the aging process. We showed for the first time that the short-latency, reciprocal inhibitory pathways from the common peroneal nerve to soleus muscle and from the tibial nerve to the tibialis anterior muscle also decreased with age, when measured as a depression of ongoing voluntary activity. These results suggest that there may be a general decrease in excitability of spinal pathways with age. Thus, the use of age-matched controls is particularly important in assessing abnormalities resulting from disorders that occur primarily in the elderly.  相似文献   

20.
An attempt was made to evaluate critically the extent to which the background electrocorticogram, neuronal impulse activity, and evoked potentials reflect the state of cortical excitation and inhibition. It was shown that during electrocorticogram desynchronization, firing neurons predominated in the surface (mainly afferent) layers, while inhibited neurons were in the majority in the lower layers of the cortex. Consequently, desynchronization does not reflect diffuse excitation of the cortex and cannot be taken as an index of central excitation. Slow electrocortical waves cannot be used as indicators of an inhibitory state, even though they may be associated with processes leading to the development of inhibition. Under the effects of different stimuli, the number of neurons participating in impulse condition, and the number of neurons temporarily inhibiting impulse activity in the projection cortical area were stable (ratio 2:1). It was found that the correlation between impulse discharges of neuronal pairs increases during both central excitation and central inhibition. Nonetheless, differences between cortical excitation and inhibition were seen in the reorganization of neuronal columns. The use of evoked potentials to determine cortical excitation or inhibition is complicated by the fact that the amplitude of evoked-potential components reflects the divergent influences of many factors. It was shown that conditional excitation diminished the evoked potential to a light stimulus in the projection cortical area, but caused it to increase in the region of the motor analyzer. The elaboration of a conditional inhibition (extinction) is accompanied by the growth of an evoked potential to a stimulus in the primary cortical area, and by its repression in the region of the motor analyzer. In this case, a large delayed negative wave appears in the evoked potential.This report was presented at the All-Union Symposium on Electric Responses of the Cerebral Cortex to Afferent Stimuli, Kiev, October, 1969.Rostov-on-Don State University. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 140–154, March–April, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号