首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The lecithinase homolog (Hev b 4) from Hevea brasiliensis (Q6T4P0_HEVBR) is an important natural rubber latex allergen. Hev b 4 is a highly glycosylated protein and its carbohydrate moiety has been implicated in the binding of IgE from natural rubber latex allergic patients. The cDNA for Hev b 4 has recently been cloned and sequenced. Here, we have analyzed the post-translational modifications of natural Hev b 4 by liquid chromatography/electrospray ionization-mass spectrometry of tryptic peptides. Seven of the eight potential glycosylation sites were found to be occupied. One site, however, was only partially glycosylated. Asn224 was substituted by complex type N-glycans with fucose and xylose, whereas all other sites carried either oligomannose glycans or a mixture of oligomannose and complex N-glycans. Glycosylation site Asn308, the most C-terminal one of the eight sites, was only found in the non-glycosylated form. The complex type N-glycans apparently form the molecular basis for the immune reaction with patients' sera. A large fraction of Hev b 4 molecules contains two or more complex N-glycans and thus a physiological reaction against these polyvalent allergens on the basis of the carbohydrate is in theory possible. Aside from allowing glycosylation analysis, the mass spectrometric data defined the N-terminal cleavage site of Hev b 4. This study once more demonstrates the outstanding analytical potential of electrospray ionization-mass spectrometry coupled with liquid chromatographic separation.  相似文献   

2.
Decreased immune reactivity of isoforms of major allergens has been reported. However, such claims have always been based on experiments with recombinant proteins. This work describes the molecular and physicochemical characterization of a hevein (Hev b 6.0201) natural isoform (Hev b 6.0202), which is present in rubber latex from Hevea brasiliensis. The isoallergen has a single substitution Asn14Asp, which gives rise to local differences in the surface potential, as observed from the crystal structure presented here. Besides, ELISA inhibition using serum pools of adult and pediatric patients showed reduced IgE-binding capacity ( approximately 27%) with the isoallergen. Overall, these results are relevant to delineate crucial residues involved in this dominant discontinuous epitope.  相似文献   

3.
Hev b 6.01 is a major allergen of natural rubber latex with sensitization of 70-86% of latex glove-allergic subjects. Recently, we mapped the immunodominant T cell sites of Hev b 6.01 to the highly IgE-reactive hevein (Hev b 6.02) domain. Hev b 6.01 contains 14 cysteine residues with multiple disulphide bridges stabilizing tertiary conformation. With the goal of a standardized specific immunotherapy we developed hypoallergenic Hev b 6.01 mutants by site-directed mutagenesis of selected cysteine residues (3, 12, 17, and 41) within the Hev b 6.02 domain. Peptides corresponding to the Hev b 6.02 domain of two of the mutants were also synthesized. These mutants and peptide variants showed markedly decreased or ablated latex-allergic patient serum IgE binding by immunoblotting and ELISA. Basophil activation testing confirmed markedly decreased activation with successive cysteine substitutions of the mutants and complete abrogation with the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide. Retention of T cell reactivity is crucial for effective specific immunotherapy and all mutants and peptide variants maintained their latex-specific T cell reactivity. The ablated allergenicity but retained T cell reactivity of the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide suggests this peptide is a suitable candidate for inclusion in a latex immunotherapy preparation.  相似文献   

4.
Minimizing allergen concentration in latex goods to prevent sensitization to natural rubber latex (NRL) and thereby the development of clinical allergy is acknowledged as of mutual interest for rubber manufacturers and regulatory health authorities. However, measuring total protein, the principal currently available method, cannot be deemed a satisfactory regulatory measure to control allergen content. Specific methods based on human IgE-containing reagents, such as radioallergosorbent test (RAST) inhibition, have been available in certain laboratories for demonstrating NRL allergens in rubber products but the methods lack standardization. Currently, one commercial test has become available for measuring individual NRL allergens by capture ELISA-based assays using monoclonal antibodies and purified or recombinant allergens. Such methods are specific, they can be properly standardized, and they are of sufficient sensitivity and reproducibility. Results from medical gloves collected in two national market surveys in Finland in 1995 and 1999, respectively, show that Hev b 6.02 and Hev b 5, the two major allergens for NRL-allergic adults, are the most abundant allergens regularly detectable in high- and moderate-allergen gloves. In addition, Hev b 3 and Hev b 1, the two major allergens for children with spina bifida, are also commonly found. In general, when the sum of the four allergens exceeded 1 microg/g, most NRL-allergic patients showed positive skin prick test reactions against them. Using these new methods assessment of threshold levels that could in due course become guidelines for the rubber industry and regulatory health authorities is becoming possible. Eventually, this progress is expected to lead to a declining incidence of latex allergy.  相似文献   

5.
6.
7.
8.
Allergen protein detection was performed by a surface imprinted layer combined with an interdigitated capacitance (IDC) transducer that allowed label-free measurements. The immobilized imprinted polymers are the probes that bind to rubber allergen proteins extracted from products such as rubber gloves. Copolymers made from methacrylic acid–vinylpyrrolidone–dihydroxyethylene-bisacrylamide (MAA–NVP–DHEBA) are soluble in aqueous solution and eliminate the denaturation of protein. When deposited as a coating onto an IDC microelectrode transduction system, such materials lead to sensors that produce capacitance responses that are clearly dependent on the concentration of the latex protein (10–900 ng ml−1) in pH 7.4 buffer. The biosensor can detect Hev b1 within minutes and with a detection limit of 10 ng ml−1. Different but related hevein allergenic proteins isolated from natural rubber latex from the rubber tree (Hev b1, Hev b2, and Hev b3) were distinguished by the imprinted material, depending on the dimension and conformation of these proteins with a selectivity factor of 4. They recognized Hevea latex proteins better than non-Hev b proteins, such as lysozyme, ovalbumin, and bovine serum albumin, by a factor of 2. Moreover, the sensor exhibited good operational stability of up to 180 days when used continuously at room temperature.  相似文献   

9.
Hevein (Hev b 6.02) is a major IgE-binding allergen in natural rubber latex and manufactured products. Both tryptophans (Trp(21) and Trp(23)) of the hevein molecule were chemically modified with BNPS-skatole (2-nitrophenylsulfenyl-3-methyl-3(')-bromoindolenine); derivatized allergen failed to significantly inhibit binding of serum IgE in ELISA assays. Similarly, skin prick tests showed that hevein-positive patients gave no response with the modified allergen. Dot blot experiments carried out with anti-hevein mono- and polyclonal antibodies confirmed the importance of Trp(21) and Trp(23) for antibody-recognition, and demonstrated the specific cross-reactivity of other molecules containing hevein-like domains. We also report the structure of Hev b 6.02 at an extended resolution (1.5A) and compare its surface properties around Trp residues with those of similar regions in other allergens. Overall our results indicate that the central part of the protein, which comprises three aromatic and other acidic and polar residues, constitutes a conformational epitope.  相似文献   

10.
Hev b 4 is a heavily glycosylated latex allergen with seven attached N-glycans, comprising of both oligomannose and complex type structures. Treatment with a mixture of N-glycosidase A and N-glycosidase F resulted in lowering Hev b 4 protein on SDS-gel from 53 to 55kDa to circa 40kDa, this being comparable to the 38.53kDa mass predicted by its cDNA. In Western-immunoblots, the enzymatically deglycosylated Hev b 4 showed negligible binding to IgE from latex allergic patients; the results indicated that IgE essentially binds to Hev b 4 via its N-glycan moiety. Structural modelling of the Hev b 4 was carried out based on the template protein and carbohydrate crystal coordinates of rhamnogalacturonan acetylesterase (PDB ID 1DEO). We managed to link four N-glycan structures on to the Hev b 4 model; the glycans were scattered over the surface of the model. The structural and functional features of Hev b 4 could prove useful to elucidate its exposed epitopes which are important for IgE binding.  相似文献   

11.
Upon centrifugation, rubber latex is divided into a layer of rubber particles, the cytosol, and the lutoid-body fraction, which is of vacuolar origin. One of the proteins isolated from the lutoid-body fraction is a protein with a molecular mass of 43 kDa, which has esterase activity on p-nitrophenylpalmitate and which shows significant sequence similarity with patatin, a vacuolar protein with esterase activity from potato (Solanum tuberosum). This protein is a major allergen in rubber latex products (Hev b 7) and can also be isolated from the cytosol fraction of rubber latex. The mature protein isolated from lutoid-bodies has no structural features expected for a vacuolar protein: the N-terminal methionine in the cDNA-derived sequence is cleaved off, the second residue is N-acetylated, and the C-terminal sequence is identical to that in the cDNA-derived sequence. Thus the patatin-like protein in Hevea brasiliensis is not a vacuolar protein, but may be associated with not yet characterized particles in the cytoplasm, which either sediment with lutoid-bodies or remain in the cytosol fraction, depending on the centrifugation conditions.  相似文献   

12.
Pt2L4 is a protein from cassava homologue to Hevb5, a principal allergen from latex. Here we aimed to elucidate immunological relationships between these proteins. Our results revealed that epitopes found in Hev b 5 are not entirely conserved in Pt2L4 which is not recognized by IgE from patients allergic to Hev b 5.  相似文献   

13.
We isolated and sequenced a clone for Candida albicans enolase from a C. albicans cDNA library by using molecular genetic techniques. The 1.4-kbp cDNA encoded one long open reading frame of 440 amino acids which was 87 and 75% similar to predicted enolases of Saccharomyces cerevisiae and enolases from other organisms, respectively. The cDNA included the entire coding region and predicted a protein of molecular weight 47,178. The codon usage was highly biased and similar to that found for the highly expressed EF-1 alpha proteins of C. albicans. Northern (RNA) blot analysis showed that the enolase cDNA hybridized to an abundant C. albicans mRNA of 1.5 kb present in both yeast and hyphal growth forms. The polypeptide product of the cloned cDNA, which was purified as a recombinant protein fused to glutathione S-transferase, had enolase enzymatic activity and inhibited radioimmunoprecipitation of a single C. albicans protein of molecular weight 47,000. Analysis of the predicted C. albicans enolase showed strong conservation in regions of alpha helices, beta sheets, and beta turns, as determined by comparison with the crystal structure of apo-enolase A of S. cerevisiae. The lack of cysteine residues and a two-amino-acid insertion in the main domain differentiated C. albicans enolase from S. cerevisiae enolase. Immunofluorescence of whole C. albicans cells by using a mouse antiserum generated against the purified fusion protein showed that enolase is not located on the surface of C. albicans. Recombinant C. albicans enolase will be useful in understanding the pathogenesis and host immune response in disseminated candidiasis, since enolase is an immunodominant antigen which circulates during disseminated infections.  相似文献   

14.
Recently we have established that IgE Abs bind to conformational epitopes in the N- and C-terminal regions of the major natural rubber latex allergen, hevein (Hev b 6.02). To identify the critical amino acid residues that interact with IgE, the hevein sequence was scanned by using site-specific mutations. Twenty-nine hevein mutants were designed and produced by a baculovirus expression system in insect cells and tested by IgE inhibition-ELISA using sera from 26 latex allergic patients. Six potential IgE-interacting residues of hevein (Arg(5), Lys(10), Glu(29), Tyr(30), His(35), and Gln(38)) were identified and characterized further in detail. Based on these six residues, two triple mutants (Hdelta3A, Hdelta3B) and hevein mutant where all six residues were mutated (Hdelta6), were designed, modeled, and produced. Structural and functional properties of these combinatory mutants were compared experimentally and in silico with those of recombinant hevein. The IgE-binding affinity of the mutants decreased by three to five orders of magnitude as compared with that of recombinant hevein. Skin prick test reactivity of the triple mutant HDelta3A was drastically reduced and that of the six-residue mutant Hdelta6 was completely abolished in all patients examined in this study. The approach presented in this paper offers tools for identification and modification of amino acid residues on conformational epitopes of allergens that interact with IgE. Hevein with a highly reduced ability to bind IgE should provide a valuable candidate molecule for immunotherapy of latex allergy and is anticipated to have a low risk of systemic side effects.  相似文献   

15.
Geranylgeranyl diphosphate (GGPP) synthase catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to give (all-E)-GGPP. GGPP is one of the key precursors in the biosynthesis of biologically significant isoprenoid compounds. In order to examine possible participation of the GGPP synthase in the enzymatic prenyl chain elongation in natural rubber biosynthesis, we cloned, overexpressed and characterized the cDNA clone encoding GGPP synthase from cDNA libraries of leaf and latex of Hevea brasiliensis. The amino acid sequence of the clone contains all conserved regions of trans-prenyl chain elongating enzymes. This cDNA was expressed in Escherichia coli cells as Trx-His-tagged fusion protein, which showed a distinct GGPP synthase activity. The apparent K(m) values for isopentenyl-, farnesyl-, geranyl- and dimethylallyl diphosphates of the GGPP synthase purified with Ni(2+)-affinity column were 24.1, 6.8, 2.3, and 11.5 microM, respectively. The enzyme shows optimum activity at approximately 40 degrees C and pH 8.5. The mRNA expression of the GGPP synthase was detected in all tissues examined, showing higher in flower and leaf than petiole and latex, where a large quantity of natural rubber is produced. On the other hand, expression levels of the Hevea farnesyl diphosphate synthase were significant in latex as well as in flower.  相似文献   

16.
17.
A novel gene (RS2) has been isolated from a Beta vulgaris (cv. Regina) cDNA library. The expression of this gene was enhanced in the mature storage organ as compared to leaf tissue. The protein encoded by this gene was found to be alanine- and glutamic acid-rich and it resembles members of the latex allergen Hev b 5 family.  相似文献   

18.
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.  相似文献   

19.
A cDNA coding for the thrombin inhibitor dipetalogastin has been isolated from a stomach library of Dipetalogaster maximus, a blood-sucking insect. The open reading frame of the cloned inhibitor cDNA codes for a protein of 344 amino-acid residues. Sequence analysis reveals the existence of three repeated homologous main regions, indicating that the inhibitor consists of three domains. Each domain shows a double-headed structure with an internal sequence homology like rhodniin, the thrombin inhibitor from the blood-sucking insect Rhodnius prolixus. Peptide sequence comparisons of the deduced amino-acid sequence exhibit a high homology of the domains I and II to the natural inhibitor dipetalogastin from the stomach content of D. maximus and to rhodniin, respectively. Significant sequence similarities to Kazal-type inhibitors, like the conserved sequence CGXDXXTYXNXC and several cysteine residues, indicate that the thrombin inhibitor from D. maximus is a further blood-sucking insect which belongs to the Kazal-type family (besides rhodniin). A biologically active recombinant protein corresponding to domain II of the dipetalogastin cDNA was expressed in Escherichia coli. The isolated recombinant dipetalogastin with a molecular mass of 12.91 kDa has proved to be a specific thrombin inhibitor similar to its natural counterpart as well as rhodniin and hirudin. The Ki value of the recombinant dipetalogastin was determined to be 49.3 +/- 22.28 fM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号