首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The renewability assessment has seldom been a core issue in previous studies. This work presents a framework to assess the renewability of a production system based on the unified ecological evaluation method of embodied cosmic exergy analysis. For the first time, both historical renewable and nonrenewable resources uses of each social product input of a system are individually and completely traced and measured by the embodied cosmic exergy as available energy. A set of indicators have also been devised to assess the resources utilization efficiency and renewability of a production system. To demonstrate the framework, a case study is carried out for a pilot constructed wetland wastewater treatment system in Beijing. The resources utilization style and renewability of the case system are analyzed and assessed. The presented framework can be easily transplanted to assess the renewability of other products, which could contribute a lot to meet the goal of sustainable development.  相似文献   

2.
The article suggests a measure to evaluate the thermodynamic maturity of industrial systems at the level of single process units. The measure can be quantified with reasonable confidence on the basis of entropy production as defined by irreversible thermodynamics theory. It quantifies, for one process unit, the distance between its actual state of operation and its state with minimum entropy production or optimum exergy efficiency, when the two states are constrained with a fixed production capacity of the process unit. We suggest that the minimum entropy production state is a mature state, or that processes that operate at this state are mature. We propose to call the measure "the thermodynamic maturity indicator" (π), and we define it as the ratio between the minimum entropy production and the actual entropy production. We calculated π on the basis of literature data for some examples of industrial process units in the chemical and process industry (i.e., heat exchanger, chemical reactor, distillation column, and paper drying machine). The proposed thermodynamic measure should be of interest for industrial ecology because it emerges from the entropy production rate, a dynamic function that can be optimized and used to understand the thermodynamic limit to improving the exergy efficiency of industrial processes. Although not a tool for replacing one process with another or comparing one technology to another, π may be used to assess actual operation states of single process units in industrial ecology.  相似文献   

3.
At least three perspectives—industrial ecology (IE), ecological modernization theory (EMT), and the “environmental Kuznets curve” (EKC)—emphasize the potential for sustainability via refinements in production systems that dramatically reduce the environmental impacts of economic development. Can improvements in efficiency counterbalance environmental impacts stemming from the scale of production? To address this question we analyze cross‐national variation in the ecological footprint (EF) per unit of gross domestic product (GDP). The EF is a widely recognized indicator of human pressure on the environment. The EF of a nation is the amount of land area that would be required to produce the resources it consumes and to absorb the wastes it generates. The most striking finding of our analyses is that there is limited variation across nations in EF per unit of GDP. This indicates limited plasticity in the levels of EF intensity or eco‐efficiency among nations, particularly among affluent nations. EF intensity is lowest (ecoefficiency is highest) in affluent nations, but the level of efficiency in these nations does not appear to be of sufficient magnitude to compensate for their large productive capacities. These results suggest that modernization and economic development will be insufficient, in themselves, to bring about the ecological sustainability of societies.  相似文献   

4.
The food and agriculture sectors contribute significantly to climate change, but are also particularly vulnerable to its effects. Industrial ecology has robustly addressed these sectors’ contributions to climate change, but not their vulnerability to climate change. Climate change vulnerability must be addressed through development of climate change adaptation and resiliency strategies. However, there is a fundamental tension between the primary objectives of industrial ecology (efficiency, cyclic flows, and pollution prevention) and what is needed for climate change adaptation and resiliency. We develop here two potential ways through which the field can overcome (or work within) this tension and combine the tools and methods of industrial ecology with the science and process of climate change adaptation. The first layers industrial ecology tools on top of climate change adaptation strategies, allowing one to, for example, compare the environmental impacts of different adaptation strategies. The other embeds climate change adaptation and resiliency within industrial ecology tools, for example, by redefining the functional unit in life cycle assessment (LCA) to include functions of resiliency. In both, industrial ecology plays a somewhat narrow role, informing climate change adaptation and resilience decision‐making by providing quantitative indicators of environmental performance. This role for industrial ecology is important given the significant contributions and potential for mitigation of greenhouse gas emissions from food and agriculture. However, it suggests that industrial ecology's role in climate adaptation will be as an evaluator of adaptation strategies, rather than an originator.  相似文献   

5.
Moderate rates of herbivory can enhance primary production. This hypothesis has led to a controversy as to whether such positive effects can result in mutualistic interactions between plants and herbivores. We present a model for the ecology and evolution of plant-herbivore systems to address this question. In this model, herbivores have a positive indirect effect on plants through recycling of a limiting nutrient. Plants can evolve but are constrained by a trade-off between growth and antiherbivore defense. Although evolution generally does not lead to optimal plant performance, our evolutionary analysis shows that, under certain conditions, the plant-herbivore interaction can be considered mutualistic. This requires in particular that herbivores efficiently recycle nutrients and that plant reproduction be positively correlated with primary production. We emphasize that two different definitions of mutualism need to be distinguished. A first ecological definition of mutualism is based on the short-term response of plants to herbivore removal, whereas a second evolutionary definition rests on the long-term response of plants to herbivore removal, allowing plants to adapt to the absence of herbivores. The conditions for an evolutionary mutualism are more stringent than those for an ecological mutualism. A particularly counterintuitive result is that higher herbivore recycling efficiency results both in increased plant benefits and in the evolution of increased plant defense. Thus, antagonistic evolution occurs within a mutualistic interaction.  相似文献   

6.
The aim of this paper is to present an exergy analysis of bioethanol production process from lignocellulosic feedstock via a biochemical process to asses the overall thermodynamic efficiency and identify the main loss processes. The thermodynamic efficiency of the biochemical process was found to be 35% and the major inefficiencies of this process were identified as: the combustion of lignin for process heat and power production and the simultaneous scarification and co-fermentation process accounting for 67% and 27% of the lost exergy, respectively. These results were also compared with a previous analysis of a thermochemical process for producing biofuel. Despite fundamental differences, the biochemical and thermochemical processes considered here had similar levels of thermodynamic efficiency. Process heat and power production was the major contributor to exergy loss in both of the processes. Unlike the thermochemical process, the overall efficiency of the biochemical process largely depends on how the lignin is utilized.  相似文献   

7.
The interactions between herbivores and plants are of general interest in ecology. Even though the extensive research carried out during the last decades has culminated in many theories, additional studies are necessary to validate these findings. In particular, the hypotheses dealing with the complex interrelations of plant defense mechanisms and herbivores continue to be debated.In this paper, we develop a new indicator value that quantifies the defense mechanisms of Central European woody plants against large mammalian herbivores. The indicator value is based on three plant-specific traits: chemical defense (toxic compounds, digestion inhibitors), mechanical defense and leaf size. Our validation of the newly established indicator shows that evergreen woody plants have a significantly higher indicator value than deciduous woody plants. Moreover, plant defense is correlated with growth height: woody plants growing in the browsing zone preferred by large mammalian herbivores have significantly higher levels of defense compared with woody plants capable of growth high above the reach of large herbivores.We conclude that the new plant defense indicator value is a valuable tool for the validation of existing hypotheses and habitat calibration on a statistical basis. The quantification of plant mechanisms of defense against large herbivores produces a significantly better understanding of the multifaceted nature of plant–animal interactions and should contribute positively to future studies.  相似文献   

8.
Aim Electronic distribution atlases and lists of ecological indicator values are becoming important tools in plant geography. In this contribution, we combine a geographical and an ecological data bank, and map out patterns of indicator value spectra (instead of single or average values) across a physiographically complex landscape. For our study, we select indicators of soil pH and carbonate content as key environmental factors that strongly affect overall plant diversity patterns in the temperate zone. Our goal is to relate the distribution and diversity of plant groups that are indicators of soil pH and carbonate content to environmental controls at the landscape‐scale, and thus contribute to a causal understanding of species pools. Location We studied the Bavarian Alps, which represent the German portion of the Northern Alps. Methods Based on the existing floristic survey, we calculated relative frequencies of nine classes of indicator plants for soil pH and carbonate content in grid cells. The resulting attribute matrix (cells by indicator class frequencies) was subjected to principal components analysis and to k‐means clustering. Results were compared and mapped out in the grid array of the whole region, resulting in continuous and discrete representations of species pool structure. We used a geographical information system to derive physiographical landscape properties from a geological map and a digital elevation model, and analysed their statistical relationship with the shapes of indicator spectra. Results and Main conclusions Averages of indicator values for soil pH and carbonate content follow the geological structure quite closely. Surprisingly, the diversity of indicator plant groups does not appear to be a function of geological or topographic heterogeneity. Rather, it seems to be related to areas of high elevation with uniform geology. The effect is a matter of additional acidophytes in high mountain areas and, in the high calcareous Alps, extreme calciphytes, while species with intermediate requirements are rarer than usual. For explanation, we suggest two facts: (1) a frequent lack of mature soils at high elevations and (2) particularities in soil genetic processes occurring under the harsh climatic conditions of high mountains.  相似文献   

9.
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology,ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system,highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally,we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.  相似文献   

10.
The hydrologic regime of the Illinois River has been substantially altered by locks and dams, floodplain levees, water diversion, and development of the watershed over the past 100 years. The natural flood pulse, a fundamental rhythm to which the plants and animals of both the river and its floodplain had adapted, has been disrupted. State, federal, and non‐governmental organizations are currently trying to naturalize the Illinois floodplain‐river system. Little, however, is known about how to recover those elements of the flood pulse essential to the native biota. In this study we propose moist‐soil plants, whose life history is dependent upon flood pulsing, as ecohydrologic indicators of the flood pulse. We explain how moist‐soil plants are supported by the natural flood pulse and present a conceptual framework that links the flooding regimes of the river and the reproductive success of the plants. Successful germination and full growth of moist‐soil plants can be a useful indicator for optimum naturalization of flood regimes. The framework also shows how the interdisciplinary linkages between hydrology, ecology, and spatial analysis assist in predicting, measuring, and comparing consequences of alternative naturalization scenarios. A new ecohydrologic parameter, lowest elevation for successful moist‐soil plant production, is presented.  相似文献   

11.
Biological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues. Fluorescent protein (FP)-based in vivo biosensing using genetically encoded fluorescent indicators (GEFIs) is a state-of-the-art methodology for directly monitoring cellular ion, redox, sugar, hormone, ATP and phosphatidic acid dynamics, and protein kinase activities in plants. The steadily growing number of diverse but technically compatible genetically encoded biosensors, the development of dual-reporting indicators, and recent achievements in plate-reader-based analyses now allow for GEFI multiplexing: the simultaneous recording of multiple GEFIs in a single experiment. This in turn enables in vivo multiparameter analyses: the simultaneous recording of various biological processes in living organisms. Here, we provide an update on currently established direct FP-based biosensors in plants, discuss their functional principles, and highlight important biological findings accomplished by employing various approaches of GEFI-based multiplexing. We also discuss challenges and provide advice for FP-based biosensor analyses in plants.

Recent progress in genetically encoded fluorescent indicator multiplexing toward multiparametric monitoring of physiological and signal transduction processes in plants.  相似文献   

12.

Background

There is an increasing need to evaluate the production and impact of medical research produced by institutions. Many indicators exist, yet we do not have enough information about their relevance. The objective of this systematic review was (1) to identify all the indicators that could be used to measure the output and outcome of medical research carried out in institutions and (2) enlist their methodology, use, positive and negative points.

Methodology

We have searched 3 databases (Pubmed, Scopus, Web of Science) using the following keywords: [Research outcome* OR research output* OR bibliometric* OR scientometric* OR scientific production] AND [indicator* OR index* OR evaluation OR metrics]. We included articles presenting, discussing or evaluating indicators measuring the scientific production of an institution. The search was conducted by two independent authors using a standardised data extraction form. For each indicator we extracted its definition, calculation, its rationale and its positive and negative points. In order to reduce bias, data extraction and analysis was performed by two independent authors.

Findings

We included 76 articles. A total of 57 indicators were identified. We have classified those indicators into 6 categories: 9 indicators of research activity, 24 indicators of scientific production and impact, 5 indicators of collaboration, 7 indicators of industrial production, 4 indicators of dissemination, 8 indicators of health service impact. The most widely discussed and described is the h-index with 31 articles discussing it.

Discussion

The majority of indicators found are bibliometric indicators of scientific production and impact. Several indicators have been developed to improve the h-index. This indicator has also inspired the creation of two indicators to measure industrial production and collaboration. Several articles propose indicators measuring research impact without detailing a methodology for calculating them. Many bibliometric indicators identified have been created but have not been used or further discussed.  相似文献   

13.
Goal, Scope and Background Exergy has been put forward as an indicator for the energetic quality of resources. The exergy of a resource accounts for the minimal work necessary to form the resource or for the maximally obtainable amount of work when bringing the resource’s components to their most common state in the natural environment. Exergy measures are traditionally applied to assess energy efficiency, regarding the exergy losses in a process system. However, the measure can be utilised as an indicator of resource quality demand when considering the specific resources that contain the exergy. Such an exergy measure indicates the required resources and assesses the total exergy removal from nature in order to provide a product, process or service. In the current work, the exergy concept is combined with a large number of life cycle inventory datasets available with ecoinvent data v1.2. The goal was, first, to provide an additional impact category indicator to Life-Cycle Assessment practitioners. Second, this work aims at making a large source of exergy scores available to scientific communities that apply exergy as a primary indicator for energy efficiency and resource quality demand. Methods The indicator Cumulative Exergy Demand (CExD) is introduced to depict total exergy removal from nature to provide a product, summing up the exergy of all resources required. CExD assesses the quality of energy demand and includes the exergy of energy carriers as well as of non-energetic materials. In the current paper, the exergy concept was applied to the resources contained in the ecoinvent database, considering chemical, kinetic, hydro-potential, nuclear, solar-radiative and thermal exergies. The impact category indicator is grouped into the eight resource categories fossil, nuclear, hydropower, biomass, other renewables, water, minerals, and metals. Exergy characterization factors for 112 different resources were included in the calculations. Results CExD was calculated for 2630 ecoinvent product and process systems. The results are presented as average values and for 26 specific groups containing 1197 products, processes and infrastructure units. Depending on the process/product group considered, energetic resources make up between 9% and 100% of the total CExD, with an average contribution of 88%. The exergy of water contributes on the average to 8% the total exergy demand, but to more than 90% in specific process groups. The average contribution of minerals and metal ores is 4%, but shows an average value as high as 38% and 13%, in metallic products and in building materials, respectively. Looking at individual processes, the contribution of the resource categories varies substantially from these average product group values. In comparison to Cumulative Energy Demand (CED) and the abiotic-resource-depletion category of CML 2001 (CML’01), non-energetic resources tend to be weighted more strongly by the CExD method. Discussion Energy and matter used in a society are not destroyed but only transformed. What is consumed and eventually depleted is usable energy and usable matter. Exergy is a measure of such useful energy. Therefore, CExD is a suitable energy based indicator for the quality of resources that are removed from nature. Similar to CED, CExD assesses energy use, but regards the quality of the energy and incorporates non-energetic materials like minerals and metals. However, it can be observed for non-renewable energy-intensive products that CExD is very similar to CED. Since CExD considers energetic and non-energetic resources on the basis of exhaustible exergy, the measure is comparable to resource indicators like the resource use category of Eco-indicator 99 and the resource depletion category of CML 2001. An advantage of CExD in comparison to these methods is that exergy is an inherent property of the resource. Therefore less assumptions and subjective choices need to be made in setting up characterization factors. However, CExD does not coversocietal demand (distinguishing between basic demand and luxury), availability or scarcity of the resource. As a consequence of the different weighting approach, CExD may differ considerably from the resource category indicators in Eco-indicator 99 and CML 2001. Conclusions The current work shows that the exergy concept can be operationalised in product life cycle assessments. CExD is a suitable indicator to assess energy and resource demand. Due to the consideration of the quality of energy and the integration of non-energetic resources, CExD is a more comprehensive indicator than the widely used CED. All of the eight CExD categories proposed are significant contributors to Cumulative Exergy Demand in at least one of the product groups analysed. In product or service assessments and comparative assertions, a careful and concious selection of the appropriate CExD-categories is required based on the energy and resource quality demand concept to be expressed by CExD. Recommendations and Perspectives A differentiation between the exergy of fossil, nuclear, hydro-potential, biomass, other renewables, water and mineral/metal resources is recommended in order to obtain a more detailed picture of resource quality demand and to recognise trade-offs between resource use, for instance energetic and non-energetic raw materials, or nonrenewable and renewable energies. ESS-Submission Editor: Dr. Gerald Rebitzer (Gerald.Rebitzer@alcan.com)  相似文献   

14.
森林生态系统发展和植物种群变化的热力学过程   总被引:1,自引:0,他引:1  
林华  曹敏 《生态学报》2006,26(12):4250-4256
随着生态学的发展,人们对自然生态系统的认识逐渐从对自然现象的记录、描述,发展为对机制的系统认识。热力学定律为人们提供了认识系统发展规律的理论基础,但在生态系统中的应用还处于起步阶段。基于前人关于生态系统可用能的研究。探讨了森林生态系统和植物种群变化的热力学过程。在生态系统水平上,把可用能耗散分为了植物耗散和环境耗散两个部分,并探讨了这两个过程之间的关系。第一次明确地提出蒸散是植物耗散的主要部分。在植物种群水平上,“可用能储存”与“可用能耗散”是决定植物竞争力的关键因子,在同一区域相同条件下,拥有更大可用能耗散能力的物种应当被优先选择。因此,群落中的优势物种应当比同层次的伴生种具有相对高的生长速度和更强的蒸腾能力。研究试图在热力学理论体系与实际生态系统的生理生态过程之间建立了纽带和桥梁,为开展森林生态系统的健康评估、深刻认识植物与环境的关系、以及评价物种竞争能力提供新的理论视野。  相似文献   

15.
将土地整治活动作为外界对农田生态系统(项目区)集中性的外部激励,以陕西关中凤翔县典型土地整治项目为例,分析了项目实施前后生态流(物质流、能量流、信息流)变化状况,建立了土地整治生态影响概念性模型,明确了相应生态流的流向与路径关系,使用可用能法和能值法测算项目区外部输入及生态产品输出,应用生态流分析法,对土地整治项目生态流和系统效率进行了定量计算。根据设定的土地整治工程使用年限,评估了项目实施后区域净生态价值、自然资源依赖度、可更新资源依赖度、生态产出率、生态承载力和生态可持续度等指标的时间变化过程。得到以下研究结果:(1)可用能法和能值法测算出的系统生态效益均呈现由项目建设初期陡降为负值,而后指数增加,再趋于平稳的过程;(2)可用能法测算出项目实施后的第29年,生态效益由亏转盈,体现出系统从被扰乱后恢复自然平衡状态的过程;(3)能值法测算出项目实施后的第4年,生态系统趋于平衡状态;(4)研究区土地整治项目的经济效益为负,于项目实施3a后趋于平稳,总投资中农业生产年投入占资金总额的78.35%。通过可用能和能值方法的结合,可以定量计算系统稳定性,为土地整治项目的物质、劳动力和资金投资选择等提供借鉴。  相似文献   

16.
产业生态系统资源代谢分析方法   总被引:4,自引:2,他引:2  
产业生态系统是由企业群、资源及环境组成的社会-经济-环境复合生态系统。资源代谢是其功能运行的重要保障。资源代谢在时间和空间尺度上的耗竭及阻滞是造成严重生态环境问题的主要原因。根据生态学原理,运用物质流分析手段解析了产业生态系统的物质流、能流及资金流结构,构建了产业生态系统资源代谢分析模型,提出了资源输入-使用-输出-循环共生四方面的资源代谢分析指标体系和基于模糊综合分析的资源代谢问题树分析方法。在此基础上提出了基于循环共生网络结构模型的生态管理模式。以期为产业资源的生态管理提供方法支撑。  相似文献   

17.
18.
Previous studies showed that using carbon dioxide (CO2) as a raw material for chemical syntheses may provide an opportunity for achieving greenhouse gas (GHG) savings and a low‐carbon economy. Nevertheless, it is not clear whether carbon capture and utilization benefits the environment in terms of resource efficiency. We analyzed the production of methane, methanol, and synthesis gas as basic chemicals and derived polyoxymethylene, polyethylene, and polypropylene as polymers by calculating the output‐oriented indicator global warming impact (GWI) and the resource‐based indicators raw material input (RMI) and total material requirement (TMR) on a cradle‐to‐gate basis. As carbon source, we analyzed the capturing of CO2 from air, raw biogas, cement plants, lignite‐fired power, and municipal waste incineration plants. Wind power serves as an energy source for hydrogen production. Our data were derived from both industrial processes and process simulations. The results demonstrate that the analyzed CO2‐based process chains reduce the amount of GHG emissions in comparison to the conventional ones. At the same time, the CO2‐based process chains require an increased amount of (abiotic) resources. This trade‐off between decreased GHG emissions and increased resource use is assessed. The decision about whether or not to recycle CO2 into hydrocarbons depends largely on the source and amount of energy used to produce hydrogen.  相似文献   

19.
Biotechnology is playing a vital alternative role in the production of pharmaceutical plant secondary metabolites to support industrial production and mitigate over-exploitation of natural sources. High-value pharmaceuticals that include alkaloids, flavonoids, terpenes, steroids, among others, are biosynthesized as a defensive strategy by plants in response to perturbations under natural environmental conditions. However, they can also be produced using plant cell, tissue, and organ culture techniques through the application of various in vitro approaches and strategies. In the past decades, efforts were on the clonal propagation, biomass and secondary metabolites production in the in vitro cultures of medicinally important plants that produce these molecules. In recent years, the effort has shifted towards optimizing culture conditions for their production through the application of cell line selection, elicitation, precursor feeding, two-phase co-culture among cell, tissue, and organ culture approaches. The efforts are made with the possibility to scale-up the production, meet pharmaceutical industry demand and conserve natural sources of the molecules. Applications of metabolic engineering and production from endophytes are also getting increasing attention but, the approaches are far from practical application in their industrial production.  相似文献   

20.
Biotechnological approaches for L-ascorbic acid production   总被引:3,自引:0,他引:3  
Over the past decade there has been increasing pressure to develop alternatives to the Reichstein process, a largely chemical synthesis by which the vast majority of world vitamin C (L-ascorbic acid, L-AA) is produced. The pressures include increasing environmental concerns and legislation, and the need to increase process efficiency and reduce capital costs. The development of efficient fermentation processes in the past ten years has also represented a catalyst for change. Here, we describe the development of biotechnological alternatives for the synthesis of Reichstein intermediates by industrial microorganisms. The recent elucidation of the plant biosynthetic pathway represents new opportunities not only for the direct synthesis of L-AA by fermentation but also for the production of human crop plants and animal fodder with enhanced nutritional value. We discuss the potential for these developments in the light of recent findings concerning L-AA biosynthesis in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号