首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G‐protein‐coupled receptors (GPCR) are a family of membrane‐embedded metabotropic receptors which translate extracellular ligand binding into an intracellular response. Here, we calculate the motion of several GPCR family members such as the M2 and M3 muscarinic acetylcholine receptors, the A2A adenosine receptor, the β2‐adrenergic receptor, and the CXCR4 chemokine receptor using elastic network normal modes. The normal modes reveal a dilation and a contraction of the GPCR vestibule associated with ligand passage, and activation, respectively. Contraction of the vestibule on the extracellular side is correlated with cavity formation of the G‐protein binding pocket on the intracellular side, which initiates intracellular signaling. Interestingly, the normal modes of rhodopsin do not correlate well with the motion of other GPCR family members. Electrostatic potential calculation of the GPCRs reveal a negatively charged field around the ligand binding site acting as a siphon to draw‐in positively charged ligands on the membrane surface. Altogether, these results expose the GPCR activation mechanism and show how conformational changes on the cell surface side of the receptor are allosterically translated into structural changes on the inside. Proteins 2014; 82:579–586. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Recent studies indicate that membrane cholesterol can associate with G protein-coupled receptors (GPCRs) and affect their function. Previously, we reported that manipulation of membrane cholesterol affects ligand binding and signal transduction of the type 1 cholecystokinin receptor (CCK1R), a Class A GPCR. We now demonstrate that the closely related type 2 cholecystokinin receptor (CCK2R) does not share this cholesterol sensitivity. The sequences of both receptors reveal almost identical cholesterol interaction motifs in analogous locations in transmembrane segments two, three, four, and five. The disparity in cholesterol sensitivity between these receptors, despite their close structural relationship, provides a unique opportunity to define the possible structural basis of cholesterol sensitivity of CCK1R. To evaluate the relative contributions of different regions of CCK1R to cholesterol sensitivity, we performed ligand binding studies and biological activity assays of wild-type and CCK2R/CCK1R chimeric receptor-bearing Chinese hamster ovary cells after manipulation of membrane cholesterol. We also extended these studies to site-directed mutations within the cholesterol interaction motifs. The results contribute to a better understanding of the structural requirements for cholesterol sensitivity in CCK1R and provides insight into the function of other cholesterol-sensitive Class A GPCRs.  相似文献   

3.
G protein-coupled receptors (GPCRs) form dimeric or oligomeric complexes in vivo. However, the function of oligomerization in receptor-mediated G protein activation is unclear. Previous studies of the yeast alpha-factor receptor (STE2 gene product) have indicated that oligomerization promotes signaling. Here we have addressed the mechanism by which oligomerization facilitates G protein signaling by examining the ability of ligand binding- and G protein coupling-defective alpha-factor receptors to form complexes in vivo and to correct their signaling defects when co-expressed (trans complementation). Newly and previously identified receptor mutants indicated that ligand binding involves the exofacial end of transmembrane domain (TM) 4, whereas G protein coupling involves ic1, ic3, the C-terminal tail, and the intracellular ends of TM2 and TM3. Mutant receptors bearing substitutions in these domains formed homo-oligomeric or hetero-oligomeric complexes in vivo, as indicated by results of fluorescence resonance energy transfer experiments. Co-expression of ligand binding- and G protein coupling-defective mutant receptors did not significantly improve signaling. In contrast, co-expression of ic1 and ic3 mutations in trans but not in cis significantly increased signaling efficiency. Therefore, we suggest that subunits of the alpha-factor receptor: 1) are activated independently rather than cooperatively by agonist, and 2) function in a concerted fashion to promote G protein activation, possibly by contacting different subunits or regions of the G protein heterotrimer.  相似文献   

4.
5.
6.
Previous studies have shown that ligand or immunoaffinity chromatography can be used to purify the human platelet thromboxane A2 (TXA2) receptor-Galphaq complex. The same principle of co-elution was used to identify another G-protein associated with platelet TXA2 receptors. It was found that in addition to Galphaq, purification of TXA2 receptors by ligand (SQ31,491)-affinity chromatography resulted in the co-purification of a member of the G12 family. Using an antipeptide antibody specific for the human G13 alpha-subunit, this G-protein was identified as Galpha13. In separate experiments, it was found that the TXA2 receptor agonist U46619 stimulated [35S]guanosine 5'-O-(3-thiotriphosphate) incorporation into G13 alpha-subunit. Further evidence for functional coupling of G13 to TXA2 receptors was provided in studies where solubilized platelet membranes were subjected to immunoaffinity chromatography using an antibody raised against native TXA2 receptor protein. It was found that U46619 induced a significant decrease in Galphaq and Galpha13 association with the receptor protein. These results indicate that both Galphaq and Galpha13 are functionally coupled to TXA2 receptors and dissociate upon agonist activation. Furthermore, this agonist effect was specifically blocked by pretreatment with the TXA2 receptor antagonist, BM13.505. Taken collectively, these data provide direct evidence that endogenous Galpha13 is a TXA2 receptor-coupled G-protein, as: 1) its alpha-subunit can be co-purified with the receptor protein using both ligand and immunoaffinity chromatography, 2) TXA2 receptor activation stimulates GTPgammaS binding to Galpha13, and 3) Galpha13 affinity for the TXA2 receptor can be modulated by agonist-receptor activation.  相似文献   

7.
The human formyl peptide receptor (FPR) is a prototypical G(i) protein-coupled receptor, but little is known about quantitative aspects of FPR-G(i) protein coupling. To address this issue, we fused the FPR to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) and expressed the fusion proteins in Sf9 insect cells. Fusion of a receptor to Galpha ensures a defined 1:1 stoichiometry of the signaling partners. By analyzing high affinity agonist binding, the kinetics of agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTP hydrolysis and photolabeling of Galpha, we demonstrate highly efficient coupling of the FPR to fused G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) without cross-talk of the receptor to insect cell G proteins. The FPR displayed high constitutive activity when coupled to all three G(i)alpha isoforms. The K(d) values of high affinity agonist binding were approximately 100-fold lower than the EC(50) (concentration that gives half-maximal stimulation) values of agonist for GTPase activation. Based on the B(max) values of agonist saturation binding and ligand-regulated GTPgammaS binding, it was previously proposed that the FPR activates G proteins catalytically, i.e. one FPR activates several G(i) proteins. Analysis of agonist saturation binding, ligand-regulated GTPgammaS saturation binding and quantitative immunoblotting with membranes expressing FPR-G(i)alpha fusion proteins and nonfused FPR now reveals that FPR agonist binding greatly underestimates the actual FPR expression level. Our data show the following: (i) the FPR couples to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) with similar efficiency; (ii) the FPR can exist in a state of low agonist affinity that couples efficiently to G proteins; and (iii) in contrast to the previously held view, the FPR appears to activate G(i) proteins linearly and not catalytically.  相似文献   

8.
The insulin and insulin‐like growth factor 1 receptors activate overlapping signalling pathways that are critical for growth, metabolism, survival and longevity. Their mechanism of ligand binding and activation displays complex allosteric properties, which no mathematical model has been able to account for. Modelling these receptors’ binding and activation in terms of interactions between the molecular components is problematical due to many unknown biochemical and structural details. Moreover, substantial combinatorial complexity originating from multivalent ligand binding further complicates the problem. On the basis of the available structural and biochemical information, we develop a physically plausible model of the receptor binding and activation, which is based on the concept of a harmonic oscillator. Modelling a network of interactions among all possible receptor intermediaries arising in the context of the model (35, for the insulin receptor) accurately reproduces for the first time all the kinetic properties of the receptor, and provides unique and robust estimates of the kinetic parameters. The harmonic oscillator model may be adaptable for many other dimeric/dimerizing receptor tyrosine kinases, cytokine receptors and G‐protein‐coupled receptors where ligand crosslinking occurs.  相似文献   

9.
Activation of nuclear receptors: a perspective from structural genomics   总被引:4,自引:0,他引:4  
Crystal structures of more than two dozen different nuclear receptor ligand binding domains have defined a simple paradigm of receptor activation, in which agonist binding induces the activation function-2 (AF-2) helix to form a charge clamp for coactivator recruitment. Recent structural studies present a surprising contrast. Activation of the mouse LRH-1 receptor is independent of a bound agonist despite its large ligand binding pocket, whereas the activation of the Drosophila DHR38 receptor is dependent on ecdysteroids even though the receptor lacks a ligand binding pocket. These new findings shed light on the diverse structural mechanisms that nuclear receptors have evolved for activation, and have important implications in their respective signaling pathways.  相似文献   

10.
Identification of structurally distinct alpha 2-adrenergic receptors   总被引:4,自引:0,他引:4  
Recent studies involving a variety of membrane receptors and ion channels indicate that diversity exists among these proteins as evidenced by tissue-specific and developmentally related expression of different isoforms. Alpha 2-Adrenergic receptors, plasma membrane proteins involved in sympathetic neurotransmission, may similarly represent a nonhomogeneous class of binding sites based on the following observations. First, their activation can elicit a wide variety of effector cell responses, which are apparently triggered by at least three different signal transduction mechanisms. Second, alpha 2-adrenergic receptors in various tissues and species exhibit marked differences in their ligand recognition properties. To determine if heterogeneity of the receptor protein itself is involved in generating this diversity, we structurally characterized the alpha 2-adrenergic receptor in two tissues that exhibit the greatest differences in ligand recognition properties, neonatal rat lung and human platelet. We report here that these differences in ligand recognition are maintained after partial receptor purification (50-100-fold) and are associated with distinct differences in the physical and structural properties of the receptor protein. The human platelet and neonatal rat lung receptor differ in the apparent molecular weight of their hormone-binding subunits (human platelet, Mr approximately 64,000 versus neonatal rat lung, Mr approximately 44,000) as well as in the number or type of their associated oligosaccharide moieties. The observed diversity is consistent with expression of isoforms of the alpha 2-adrenergic receptor and suggests the presence of more than one gene encoding similar but distinct receptor proteins.  相似文献   

11.
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.  相似文献   

12.
Sarvazyan NA  Lim WK  Neubig RR 《Biochemistry》2002,41(42):12858-12867
The dynamics of G protein heterotrimer complex formation and disassembly in response to nucleotide binding and receptor activation govern the rate of responses to external stimuli. We use a novel flow cytometry approach to study the effects of lipid modification, isoform specificity, lipid environment, and receptor stimulation on the affinity and kinetics of G protein subunit binding. Fluorescein-labeled myristoylated Galpha(i1) (F-alpha(i1)) was used as the ligand bound to Gbetagamma in competition binding studies with differently modified Galpha subunit isoforms. In detergent solutions, the binding affinity of Galpha(i) to betagamma was 2 orders of magnitude higher than for Galpha(o) and Galpha(s) (IC50 of 0.2 nM vs 17 and 27 nM, respectively), while in reconstituted bovine brain lipid vesicles, binding was slightly weaker. The effects of receptor on the G protein complex were assessed in alpha(2A)AR receptor expressing CHO cell membranes into which purified betagamma subunits and F-alpha(i1) were reconstituted. These cell membrane studies led to the following observations: (1) binding of alpha subunit to the betagamma was not enhanced by receptor in the presence or absence of agonist, indicating that betagamma contributed essentially all of the binding energy for alpha(i1) interaction with the membrane; (2) activation of the receptor facilitated GTPgammaS-stimulated detachment of F-alpha(i1) from betagamma and the membrane. Thus flow cytometry permits quantiatitive and real-time assessments of protein-protein interactions in complex membrane environments.  相似文献   

13.
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.  相似文献   

14.
G‐protein coupled receptors (GPCRs) are transmembrane signaling molecules, with a majority of them performing important physiological roles. β2‐Adrenergic receptor (β2‐AR) is a well‐studied GPCRs that mediates natural responses to the hormones adrenaline and noradrenaline. Analysis of the ligand‐binding region of β2‐AR using the recently solved high‐resolution crystal structures revealed a number of highly conserved amino acids that might be involved in ligand binding. However, detailed structure‐function studies on some of these residues have not been performed, and their role in ligand binding remains to be elucidated. In this study, we have investigated the structural and functional role of a highly conserved residue valine 114, in hamster β2‐AR by site‐directed mutagenesis. We replaced V114 in hamster β2‐AR with a number of amino acid residues carrying different functional groups. In addition to the complementary substitutions V114I and V114L, the V114C and V114E mutants also showed significant ligand binding and agonist dependent G‐protein activation. However, the V114G, V114T, V114S, and V114W mutants failed to bind ligand in a specific manner. Molecular modeling studies were conducted to interpret these results in structural terms. We propose that the replacement of V114 influences not only the interaction of the ethanolamine side‐chains but also the aryl‐ring of the ligands tested. Results from this study show that the size and orientation of the hydrophobic residue at position V114 in β2‐AR affect binding of both agonists and antagonists, but it does not influence the receptor expression or folding.  相似文献   

15.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors. Here, we demonstrate that H3 relaxin activates LGR7 but not LGR8. Taking advantage of the overlapping specificity of these three ligands for the two related LGRs, chimeric receptors were generated to elucidate the mechanism of ligand activation of LGR7. Chimeric receptor LGR7/8 with the ectodomain from LGR7 but the transmembrane region from LGR8 maintains responsiveness to relaxin but was less responsive to H3 relaxin based on ligand stimulation of cAMP production. The decreased ligand signaling was accompanied by decreases in the ability of H3 relaxin to compete for (33)P-relaxin binding to the chimeric receptor. However, replacement of the exoloop 2, but not exoloop 1 or 3, of LGR7 to the chimeric LGR7/8 restored ligand binding and receptor-mediated cAMP production. These results suggested that activation of LGR7 by H3 relaxin involves specific binding of the ligand to both the ectodomain and the exoloop 2, thus providing a model with which to understand the molecular basis of ligand signaling for this unique subgroup of G protein-coupled receptors.  相似文献   

16.
In response to ligand binding, G protein-coupled receptors undergo phosphorylation and activate cellular internalization machinery. An important component of this process is the concentration of receptors into clusters on the plasma membrane. Aside from organizing the receptor in anticipation of internalization, little is known of the function of ligand-mediated G protein-coupled receptor clustering, which has traditionally been thought of as being a phosphorylation-dependent event prior to receptor internalization. We now report that following receptor activation, the N-formyl peptide receptor (FPR) forms distinct membrane clusters prior to its association with arrestin. To determine whether this clustering is dependent upon receptor phosphorylation, we used a mutant form of the FPR, DeltaST-FPR, which lacks all phosphorylation sites in the carboxyl-terminal domain. We found that activation of the signaling-competent DeltaST-FPR resulted in rapid receptor clustering on the plasma membrane independent of Gi protein activation. This clustering required receptor activation since the D71A mutant receptor, which binds ligand but is incapable of transitioning to an active state, failed to induce receptor clustering. Furthermore we demonstrated that FPR-mediated clustering and signaling were cholesterol-dependent processes, suggesting that translocation of the active receptor to lipid rafts may be required for maximal signaling activity. Finally we showed that FPR stimulation in the absence of receptor phosphorylation resulted in translocation of FPR to GM1-rich clusters. Our results demonstrate for the first time that formation of a clustered activated receptor state precedes receptor phosphorylation, arrestin binding, and internalization.  相似文献   

17.
Huber T  Menon S  Sakmar TP 《Biochemistry》2008,47(42):11013-11023
Crystal structures of engineered human beta 2-adrenergic receptors (ARs) in complex with an inverse agonist ligand, carazolol, provide three-dimensional snapshots of the disposition of seven transmembrane helices and the ligand-binding site of an important G protein-coupled receptor (GPCR). As expected, beta 2-AR shares substantial structural similarities with rhodopsin, the dim-light photoreceptor of the rod cell. However, although carazolol and the 11- cis-retinylidene moiety of rhodopsin are situated in the same general binding pocket, the second extracellular (E2) loop structures are quite distinct. E2 in rhodopsin shows beta-sheet structure and forms part of the chromophore-binding site. In the beta 2-AR, E2 is alpha-helical and seems to be distinct from the receptor's active site, allowing a potential entry pathway for diffusible ligands. The structures, together with extensive structure-activity relationship (SAR) data from earlier studies, provide insight about possible structural determinants of ligand specificity and how the binding of agonist ligands might alter receptor conformation. We review key features of the new beta 2-AR structures in the context of recent complementary work on the conformational dynamics of GPCRs. We also report 600 ns molecular dynamics simulations that quantified beta 2-AR receptor mobility in a membrane bilayer environment and show how the binding of an agonist ligand, adrenaline (epinephrine), causes conformational changes to the ligand-binding pocket and neighboring helices.  相似文献   

18.
G protein-coupled receptors (GPCRs) constitute an abundant family of membrane receptors of high pharmacological interest. Cell-based assays are the predominant means of assessing GPCR activation, but are limited by their inherent complexity. Functional molecular assays that directly and specifically report G protein activation by receptors could offer substantial advantages. We present an approach to immobilize receptors stably and with defined orientation to substrates. By surface plasmon resonance (SPR), we were able to follow ligand binding, G protein activation, and receptor deactivation of a representative GPCR, bovine rhodopsin. Microcontact printing was used to produce micrometer-sized patterns with high contrast in receptor activity. These patterns can be used for local referencing to enhance the sensitivity of chip-based assays. The immobilized receptor was stable both for hours and during several activation cycles. A ligand dose-response curve with the photoactivatable agonist 11-cis-retinal showed a half-maximal signal at 120 nM. Our findings may be useful to develop novel assay formats for GPCRs based on receptor immobilization to solid supports, particularly to sensor surfaces.  相似文献   

19.
A series of cyclic conformationally restricted penicillamine containing somatostatin octapeptide analogues have been prepared by standard solid phase synthetic techniques and tested for their ability to inhibit specific [125I]CGP 23,996 (des-Ala1-,Gly2-[desamino-Cys3Tyr11]-dicarba3, 14-somatostatin), [3H]naloxone or [3H]DPDPE ([D-Pen2-D-Pen5]enkephalin) binding in rat brain membrane preparations. We now report structure-activity relationship studies with the synthesis of our most potent and selective mu opioid receptor compound D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, which we refer to as Cys2Tyr3Orn5Pen7-amide. While this octapeptide exhibited high affinity (IC50 = 2.80 nM) for an apparently single population of binding sites (nH = 0.89 +/- 0.1) and exceptional selectivity for mu opioid receptors with an IC50(DPDPE)/IC50 (naloxone) ratio of 4,829, it also displayed very low affinity for somatostatin receptors (IC50 = 22,700 nM). Thus, Cys2Tyr3Orn5Pen7-amide may be the ligand of choice for further characterization of mu opioid receptors and for examining the physiological role of this class of receptors.  相似文献   

20.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号