首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TCR gene rearrangement generates diversity of T lymphocytes by V(D)J recombination. Ig genes are rearranged in B cells using the same enzyme machinery. Physiologically, TCR gene is postulated to rearrange exclusively in T lineage, but malignant B precursor lymphoblasts contain rearranged TCR genes in most patients. Several mechanisms by which malignant cells break the regulation of V(D)J recombination have been proposed. In this study we show that incomplete TCR delta rearrangements V2-D3 and D2-D3 occur each in up to 16% alleles in B lymphocytes of all healthy donors studied, but complete VDJ rearrangement was negative at the sensitivity limit of 1%. Data are based on real-time quantitative PCR validated by PAGE and sequencing of the cloned products. Therefore, TCR genes rearrange not exclusively in T lineage. This study opens up further questions regarding the exact extent of the "cross-lineage" TCR or Ig rearrangements in normal lymphocytes, specific subsets in which the cross-lineage rearrangements occur, and the physiological importance of these rearrangements.  相似文献   

2.
3.
Rearrangement of Ag receptor genes requires recognition by the lymphocyte recombinase of heptamer-nonamer signal sequences followed by two endonucleolytic cleavages and two DNA ligations to form the coding and signal joints. The phenomenon of trans-rearrangement, in which Ag receptor gene segments located on different chromosomes recombine to yield chimeric products, provides an in vivo system in which to investigate the ability of the recombinase to carry out each of these functions in trans. Trans-rearrangements between TCRG and TCRD loci, similar in structure and frequency to those observed previously in human lymphoid tissues, were demonstrated in normal mouse thymus by PCR with crossed V gamma/J delta and V delta/J gamma primer pairs. A simple mechanistic model for trans-rearrangement was then tested. This model posits an ability of the recombinase to catalyze the formation of both coding and signal joints in trans and therefore predicts that trans-rearrangements will generate chimeric signal joints. In adult thymus, chimeric D delta 2-J gamma 1 and D delta 2-J gamma 2 signal joints, containing fused heptamer-nonamer sequences, could be detected by PCR and were each present at frequencies sufficient to account for a large proportion of the corresponding TCRG/TCRD trans-rearrangements. In agreement with the predictions of the model, chimeric signal joints were found as both linear chromosomal and circular episomal DNA. The results provide a framework for understanding the formation of chromosomal translocations in normal and neoplastic lymphoid cells and support the possibility of a looping mechanism for standard gene rearrangement. To test the form of regulation of TCRG rearrangement, the frequencies of specific signal joints from standard and trans-rearrangements were compared. Although J gamma 1 and J gamma 2 segments participated with equal frequency in trans-rearrangement with D delta 2, only the J gamma 1 segment participated in standard rearrangement with V gamma 5. The results suggest that V-J recombination in the TCRG locus is regulated directly at the DNA level by cis-acting constraints which do not affect the accessibility of individual TCRG gene segments to recombination in trans.  相似文献   

4.
Zhang Y  Shi M  Wen Q  Luo W  Yang Z  Zhou M  Ma L 《Cellular immunology》2012,274(1-2):19-25
Secondary rearrangements of the T cell receptor (TCR) represent a genetic correction mechanism which changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. Murine T-cell hybridoma A1.1 was employed to investigate whether antigenic stimulation induced re-expression of recombinase genes and altered TCR Vβ expression. Following repeated antigenic stimulation, A1.1 cells were induced to re-express recombination activating gene (RAG)1 and terminal deoxynucleotidyl transferase (TdT) which are generally considered prerequisite to TCR gene rearrangement. Accompanied with the significant changes in TCR mRNA levels over time, it is suggested that secondary rearrangements may be induced in A1.1 cells, which represent a mature T cell clone capable of re-expressing RAG genes and possesses the prerequisite for secondary V(D)J rearrangement.  相似文献   

5.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

6.
A process unique to lymphocyte differentiation is the rearrangement of genes encoding antigen-specific receptors on B and T cells. A mouse mutant (C.B-17scid) with severe combined immune deficiency, i.e., that lacks functional B and T cells, shows no evidence of such gene rearrangements. However, rearrangements were detected in Abelson murine leukemia virus-transformed bone marrow cells and in spontaneous thymic lymphomas from C.B-17scid mice. Most of these rearrangements were abnormal: approximately 80% of Igh rearrangements deleted the entire Jh region, and approximately 60% of TCR beta rearrangements deleted the entire J beta 2 region. The deletions appeared to result from faulty D-to-J recombination. No such abnormal rearrangements were detected in transformed tissues from control mice. The scid mutation may adversely affect the recombinase system catalyzing the assembly of antigen receptor genes in developing B and T lymphocytes.  相似文献   

7.
8.
The DNA rearrangements leading to the assembly of genes coding for the immunoglobulin heavy chain (IgH) in B cells and the T cell receptor for antigen in T cells are not completely lineage specific. This probably reflects the use of a common recombinase by IgH and the T cell receptor. This paper describes novel observations on the nature of these cross-lineage rearrangements. A high proportion (though not all) IgH rearrangements in human T leukaemic cells involve the D segment nearest to the J region (DQ52). This same D segment is not involved in B cell IgH rearrangements with one important exception, namely a proportion of B cell leukaemic clones with the most primitive B cell precursor phenotype. These observations have potentially important implications for early lymphoid cell differentiation and in particular support the idea that the 3' D plus J region might lie within a limited window of accessibility of the IgH gene in precursor lymphocytes.  相似文献   

9.
D G Schatz  D Baltimore 《Cell》1988,53(1):107-115
Using retroviral recombination substrates, we investigated the developmental stage of expression of V(D)J recombinase activity and the activation of recombinase activity in nonlymphoid cells. V(D)J recombinase activity was detected only in pre-B cells, but a DNA transfer protocol successfully activated V(D)J recombination in an NIH 3T3 cell line. The V(D)J recombinase activity was transferred in a second round of transfection and was then stably expressed in fibroblasts at a level comparable to that of a recombinationally active pre-B cell. It is likely that expression of a single, lymphoid-specific gene in a fibroblast is sufficient to confer V(D)J recombinase activity on that cell.  相似文献   

10.
11.
The rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes in lymphocytes by V(D)J recombinase is essential for immunological diversity in humans. These DNA rearrangements involve cleavage by the RAG1 and RAG2 (RAG1/2) recombinase enzymes at recombination signal sequences (RSS). This reaction generates two products, cleaved signal ends and coding ends. Coding ends are ligated by non-homologous end-joining proteins to form a functional Ig or TCR gene product, while the signal ends form a signal joint. In vitro studies have demonstrated that RAG1/2 are capable of mediating the transposition of cleaved signal ends into non-specific sites of a target DNA molecule. However, to date, in vivo transposition of signal ends has not been demonstrated. We present evidence of in vivo inter-chromosomal transposition in humans mediated by V(D)J recombinase. T-cell isolates were shown to contain TCRalpha signal ends from chromosome 14 inserted into the X-linked hypo xanthine-guanine phosphoribosyl transferase locus, resulting in gene inactivation. These findings implicate V(D)J recombinase-mediated transposition as a mutagenic mechanism capable of deleterious genetic rearrangements in humans.  相似文献   

12.
13.
14.
15.
V(D)J recombinase mediates rearrangements at immune loci and cryptic recombination signal sequences (cRSS), resulting in a variety of genomic rearrangements in normal lymphocytes and leukemic cells from children and adults. The frequency at which these rearrangements occur and their potential pathologic consequences are developmentally dependent. To gain insight into V(D)J recombinase-mediated events during human development, we investigated 265 coding junctions associated with cRSS sites at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in peripheral T cells from 111 children during the late stages of fetal development through early adolescence. We observed a number of specific V(D)J recombinase processing features that were both age and gender dependent. In particular, TdT-mediated nucleotide insertions varied depending on age and gender, including percentage of coding junctions containing N-nucleotide inserts, predominance of GC nucleotides, and presence of inverted repeats (Pr-nucleotides) at processed coding ends. In addition, the extent of exonucleolytic processing of coding ends was inversely related to age. We also observed a coding-partner-dependent difference in exonucleolytic processing and an age-specific difference in the subtypes of V(D)J-mediated events. We investigated these age- and gender-specific differences with recombination signal information content analysis of the cRSS sites in the human HPRT locus to gain insight into the mechanisms mediating these developmentally specific V(D)J recombinase-mediated rearrangements in humans.  相似文献   

16.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

17.
18.
19.
Chromosomal translocations involving antigen receptor genes and oncogenes have been observed in several forms of lymphoid malignancy. Observations of their lymphocyte-restricted occurrence and a molecular analysis of some translocation breakpoints have suggested that some of these rearrangements are generated by V(D)J recombinase activity. However, a direct correlation between this activity and the generation of such rearrangements has never been established. In addition, because these aberrant rearrangements are usually detected only after a tumor has been formed, the frequency with which the recombinase machinery generates translocations has never been assessed directly. To approach these issues, immunoglobulin light-chain gene rearrangements were induced in pre-B cells transformed by temperature-sensitive mutants of Abelson murine leukemia virus and PCR was used to identify interlocus recombinants. Vlambda Jkappa and Vkappa Jlambda rearrangements as well as signal joints resulting from the recombination of Vlambda and Jkappa coding elements were recovered and were found to be similar in structure to conventional intrachromosomal joints. Because these products were detected only when the cells were undergoing active intralocus rearrangement, they provide direct evidence that translocations can be generated by the V(D)J recombinase machinery. Dilution analyses revealed that interlocus rearrangements occur about 1,000 times less frequently than conventional intralocus rearrangements. Considering the large numbers of lymphocytes generated throughout life, aberrant rearrangements generated by the V(D)J recombinase may be relatively common.  相似文献   

20.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号