首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella enterica serovar Newport has undergone a rapid epidemic spread in dairy cattle. This provides an efficient mechanism for pathogen amplification and dissemination into the environment through manure spreading on agricultural land. The objective of this study was to determine the survival characteristics of Salmonella serovar Newport in manure and manure-amended soils where the pathogen may be amplified. A multidrug-resistant (MDR) Salmonella serovar Newport strain and a drug-susceptible (DS) strain, both bovine isolates, were inoculated into dairy manure that was incubated under constant temperature and moisture conditions alone or after being mixed with sterilized or nonsterilized soil. Salmonella serovar Newport concentrations increased by up to 400% in the first 1 to 3 days following inoculation, and a trend of steady decline followed. With manure treatment, a sharp decline in cell concentration occurred after day 35, possibly due to microbial antagonism. For all treatments, decreases in Salmonella serovar Newport concentrations over time fit a first-order kinetic model. Log reduction time was 14 to 32 days for 1 log10, 28 to 64 days for 2 log10, and 42 to 96 days for 3 log10 declines in the organisms' populations from initially inoculated concentrations. Most-probable-number monitoring data indicated that the organisms persisted for 184, 332, and 405 days in manure, manure-amended nonsterilized soil, and manure-amended sterilized soil, respectively. The MDR strain and the DS strain had similar survival patterns.  相似文献   

2.
Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 10(7) CFU g(-1) and 10(5) CFU ml(-1), respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 x 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.  相似文献   

3.
Several outbreaks caused by pathogenic bacteria are related to the consumption of raw produce contaminated by animal manure. The majority of these outbreaks have been linked to Salmonella spp. We examined the ability of Salmonella enterica serovar Weltevreden to persist and survive in manure and soil as well as disseminate to, and persist on, spinach roots and leaves. Significantly higher numbers of S. Weltevreden inoculated into manure and applied to soil before planting spinach were found in soil than in pot cultures, where the pathogen had been inoculated directly into soil 14 days postplanting. Moreover, the pathogen seemed to disperse from manure to spinach roots, as we observed a continuous increase in the number of contaminated replicate pot cultures throughout the evaluation period. We also found that, in some cases, S. Weltevreden present in the phyllosphere had the ability to persist for the entire evaluation period (21 days), with only slight reductions in cell numbers. The results from the present study show that S. Weltevreden is capable of persisting in soil, roots and shoots for prolonged periods, indicating the importance of strict monitoring of untreated animal manure before considering its application to agricultural land.  相似文献   

4.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

5.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

6.
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green fluorescent protein-expressing Escherichia coli O157:H7/pZs and red fluorescent protein-expressing Salmonella enterica serovar Typhimurium/pDs were added to laboratory-scale manure-amended soil microcosms with moisture contents of 60% or 80% field capacity and incubated at temperatures of -20°C, 10°C, or 25°C for 120 days. A two-stage first-order decay model was used to determine stage 1 and stage 2 first-order decay rate coefficients and transition times for each organism and qPCR genetic marker in each treatment. Genetic markers for FIB (Enterococcus spp., E. coli, and Bacteroidales) exhibited decay rate coefficients similar to that of E. coli O157:H7/pZs but not of S. enterica serovar Typhimurium/pDs and persisted at detectable levels longer than both pathogens. Concentrations of these two bacterial pathogens, their counterpart qPCR genetic markers (stx1 and ttrRSBCA, respectively), and FIB genetic markers were also correlated (r = 0.528 to 0.745). This suggests that these qPCR genetic markers may be reliable conservative surrogates for monitoring fecal pollution from manure-amended land. Host-associated qPCR genetic markers for microbial source tracking decayed rapidly to nondetectable concentrations, long before FIB, Salmonella enterica serovar Typhimurium/pDs, and E. coli O157:H7/pZs. Although good indicators of point source or recent nonpoint source fecal contamination events, these host-associated qPCR genetic markers may not be reliable indicators of nonpoint source fecal contamination events that occur weeks following manure application on land.  相似文献   

7.
Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 107 CFU g−1 and 105 CFU ml−1, respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 × 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.  相似文献   

8.
Recently, multi-drug-resistant (MDR) Salmonella enterica subspecies enterica serovar Newport reemerged as a public and animal health problem. The antibiotic resistance of 198 isolates and the pulsed-field gel electrophoresis patterns (PFGE) of 139 isolates were determined. Serovar Newport isolates collected between 1988 and 2001 were included in the study. One hundred seventy-eight isolates were collected from the San Joaquin valley in California and came from dairy cattle clinical samples, human clinical samples, bulk tank milk samples, fecal samples from preweaned calves, and waterways. Twenty clinical isolates from humans from various regions of the United States were also included in the study. Resistance to 18 antibiotics was determined using a disk diffusion assay. PFGE patterns were determined using a single enzyme (XbaI). The PFGE and antibiogram patterns were described using cluster analysis. Although the antibiotic resistance patterns of historic (1988 to 1995) and contemporary (1999 to 2001) isolates were similar, the contemporary isolates differed from the historic isolates by being resistant to cephalosporins and florfenicol and in their general sensitivity to kanamycin and neomycin. With few exceptions, the contemporary isolates clustered together and were clearly separated from the historic isolates. One PFGE-antibiogram cluster combination was predominant for the recent isolates, which were taken from human samples from all parts of the United States, as well as in the isolates from California, indicating a rapid dissemination of this phenotypic strain. The data are consistent with the hypothesis that the reemergence of MDR serovar Newport is not simply an acquisition of further antibiotic resistance genes by the historic isolates but reflects a different genetic lineage.  相似文献   

9.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

10.
Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P >or= 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10 degrees C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum temperature >20 degrees C) summer conditions is not recommended when vegetable planting is done between the time of manure application and late summer. A late fall manure application will not increase the risk of contaminating vegetables planted the next spring, since further experiments showed that repeated freeze-thaw cycles were detrimental to the survival of S. enterica serovar Typhimurium and E. coli in manure-fertilized soil. The number of indigenous E. coli in soil was never significantly lower (P < 0.05) than that of S. enterica serovar Typhimurium, suggesting its usefulness as an indicator organism for evaluating the risk of vegetable contamination with manure-borne S. enterica serovar Typhimurium.  相似文献   

11.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log(10) on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log(10). The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

12.
Recently, multi-drug-resistant (MDR) Salmonella enterica subspecies enterica serovar Newport reemerged as a public and animal health problem. The antibiotic resistance of 198 isolates and the pulsed-field gel electrophoresis patterns (PFGE) of 139 isolates were determined. Serovar Newport isolates collected between 1988 and 2001 were included in the study. One hundred seventy-eight isolates were collected from the San Joaquin valley in California and came from dairy cattle clinical samples, human clinical samples, bulk tank milk samples, fecal samples from preweaned calves, and waterways. Twenty clinical isolates from humans from various regions of the United States were also included in the study. Resistance to 18 antibiotics was determined using a disk diffusion assay. PFGE patterns were determined using a single enzyme (XbaI). The PFGE and antibiogram patterns were described using cluster analysis. Although the antibiotic resistance patterns of historic (1988 to 1995) and contemporary (1999 to 2001) isolates were similar, the contemporary isolates differed from the historic isolates by being resistant to cephalosporins and florfenicol and in their general sensitivity to kanamycin and neomycin. With few exceptions, the contemporary isolates clustered together and were clearly separated from the historic isolates. One PFGE-antibiogram cluster combination was predominant for the recent isolates, which were taken from human samples from all parts of the United States, as well as in the isolates from California, indicating a rapid dissemination of this phenotypic strain. The data are consistent with the hypothesis that the reemergence of MDR serovar Newport is not simply an acquisition of further antibiotic resistance genes by the historic isolates but reflects a different genetic lineage.  相似文献   

13.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

14.
Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10°C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum temperature >20°C) summer conditions is not recommended when vegetable planting is done between the time of manure application and late summer. A late fall manure application will not increase the risk of contaminating vegetables planted the next spring, since further experiments showed that repeated freeze-thaw cycles were detrimental to the survival of S. enterica serovar Typhimurium and E. coli in manure-fertilized soil. The number of indigenous E. coli in soil was never significantly lower (P < 0.05) than that of S. enterica serovar Typhimurium, suggesting its usefulness as an indicator organism for evaluating the risk of vegetable contamination with manure-borne S. enterica serovar Typhimurium.  相似文献   

15.
Salmonella enterica subsp. enterica serovar Newport resistant to the extended-spectrum cephalosporins (ESCs) and other antimicrobials causes septicemic salmonellosis in humans and animals and is increasingly isolated from humans, animals, foods, and environmental sources. Mechanisms whereby serovar Newport bacteria become resistant to ESCs and other classes of antimicrobials while inhabiting the intestinal tract are not well understood. The present study shows that 25.3% of serovar Newport strains isolated from the turkey poult intestinal tract after the animals were dosed with Escherichia coli harboring a large conjugative plasmid encoding the CMY-2 beta-lactamase and other drug resistance determinants acquired the plasmid and its associated drug resistance genes. The conjugative plasmid containing the cmy-2 gene was transferred not only from the donor E. coli to Salmonella serovar Newport but also to another E. coli serotype present in the intestinal tract. Laboratory studies showed that the plasmid could be readily transferred between serovar Newport and E. coli intestinal isolates. Administration of a single dose of ceftiofur, used to prevent septicemic colibacillosis, to 1-day-old turkeys did not result in the isolation of ceftiofur-resistant E. coli or Salmonella serovar Newport. There was a remarkable association between serotype, drug resistance, and plasmid profile among the E. coli strains isolated from the poults. This study shows that Salmonella serovar Newport can become resistant to ESCs and other antibiotics by acquiring a conjugative drug resistance plasmid from E. coli in the intestines.  相似文献   

16.
For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocytogenes, Salmonella enterica subsp. enterica serotype Enteritidis, and Escherichia coli. Four organic waste mixtures, containing various proportions of paper and cardboard, fruits and vegetables, and green waste, were composted in laboratory reactors with forced aeration. The physicochemical and microbiological parameters were monitored for 12 weeks during composting. The survival of bacteria over a 3-month period at 25 degrees C was assessed with samples collected after different experimental composting times. Strain survival was also monitored in mature sterilized composts. Nonsterile composts did not support pathogen growth, but survival of seeded pathogens was observed. Salmonella serovar Enteritidis survived in all composts, and longer survival (3 months) was observed in mature composts (8 and 12 weeks of composting). Mature biowaste composts may support long-term survival of Salmonella serovar Enteritidis during storage at room temperature. E. coli and L. monocytogenes survival was observed only in 4-week-old composts and never in older composts. Proper composting may prevent long-term survival of E. coli and L. monocytogenes. These results suggest that like composted sewage sludge or manure, domestic waste composts may support pathogen survival. Survival was not related to the physicochemical characteristics of the composts.  相似文献   

17.
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21 degrees C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21 degrees C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

18.
The entomogenous nematode Steinernema feltiae was encapsulated in an alginate matrix containing a tomato seed. When these capsules were placed on 0.8% agar for 7 days, the seed germinated and ca. 20% of the nematodes escaped from the capsules, whereas only 0.1% escaped from capsules without seeds. When capsules containing nematodes and a seed were planted into sterilized or nonsterilized soil, nematodes escaped to infect Galleria mellonella larvae. When seed in capsules containing ca. 274 nematodes per capsule were planted in nonsterilized soil, Galleria mortality was 90% 1 week later. Galleria mortality declined to 27%, 23%, and 0% in weeks 2, 4, and 8 postplant, respectively. In sterilized soil, Galleria mortality was 96% and did not differ significantly from the nonsterilized soil in week 1, but was significantly higher in sterilized soil over nonsterilized soil for week 2 (81%) and week 4 (51%). When capsules containing nematodes only were used, Galleria mortality was 71% in sterilized soil 1 week after planting and 58%, 33%, and 12% in weeks 2, 4, and 8 postplant, respectively. In nonsterilized soil, Galleria mortality was 8%, 30%, 21%, and 28% after 1, 2, 4, and 8 weeks, respectively, using only encapsulated nematodes. When the number of nematodes per capsule was increased to ca. 817, Galleria mortality was 92 % or higher in sterilized soil from week 1 to week 4.  相似文献   

19.
The influence of cell surface properties on attachment to soil particles and on population dynamics of introduced bacteria was studied in sterilized and nonsterilized loamy sand and silt loam. Rhizobium leguminosarum RBL5523 and three Tn5 mutants (RBL5762, RBL5810, and RBL5811) with altered cell surface properties were used. Cellulose fibrils were not produced by RBL5762. Both RBL5810 and RBL5811 produced 80 to 90% less soluble exopolysaccharides and RBL5811 had, in addition, an altered lipopolysaccharide composition. In sterilized soil the total number of cells as well as the number of particle-associated cells of RBL5523 and RBL5810 were, in general, higher as compared with cell numbers of RBL5762 and RBL5811. Differences between strains in percentage of particle-associated cells in sterilized soil were only found at high inoculum densities, when populations increased little. In the nonsterilized silt loam, final population sizes, as well as numbers of particle-associated cells, of the parental strain (RBL5523) were higher than those of strains with altered cell surface properties after 56 and 112 days of incubation. But in general, differences in survival among the strains were not very marked. The importance of association with soil particles or aggregates for the survival of introduced cells was affirmed by the pronounced increase of the percentage of particle-associated cells during incubation in nonsterilized as well as sterilized soil. However, no clear relation among altered cell surface properties, particle association, and survival was found.  相似文献   

20.
The objective of this study is to describe survival of Escherichia coli O157:H7 populations in manure-amended soils in terms of population stability, i.e. the temporal variation around the decline curve, in relation to soil characteristics indicative of soil health. Cow manure inoculated with E. coli O157:H7 was mixed with 18 pairs of organically and conventionally managed soils (10% of manure, kg kg(-1)). For four of the soil pairs, also three different manure densities (5%, 10% and 20%) were compared. All soil-manure mixtures were incubated for 2 months, and population densities of E. coli O157:H7 were quantified weekly. De-trending of survival data was done by modified logistic regression. The residual values were used to assess variation in the changes of E. coli O157:H7 populations by performing the approximate entropy (ApEn) procedure. The term irregularity is used to describe this variation in ApEn literature. On average, the decline of E. coli O157:H7 was more irregular in conventional and loamy soils than in organic and sandy soils (P < 0.05). Multiple regression analysis of irregularity of E. coli O157:H7 survival on 13 soil characteristics showed a positive relation with the ratio of copiotrophic/oligotrophic bacteria, suggesting greater instability at higher available substrate concentrations. Incremental rates of manure application significantly changed the irregularity for conventional soils only. Estimation of temporal variation of enteropathogen populations by the ApEn procedure can increase the accuracy of predicted survival time and may form an important indication for soil health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号