首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a variety of anti-microbial peptides during the course of infection. We report here that the extracytoplasmic sigma factor sigma(E) (RpoE) is required for Salmonella resistance to killing by the bactericidal/permeability-increasing protein (BPI)-derived peptide P2 and the murine alpha-defensin cryptdin-4 (Crp4). Moreover, sigma(E)-deficient S. Typhimurium is attenuated for virulence after oral infection of immunocompromised gp91phox(-/-) mice that lack a functional NADPH phagocyte oxidase, suggesting that sigma(E) plays an important role in resistance to non-oxidative mucosal host defences such as anti-microbial peptides. Although both P2 and Crp4 target the cell envelope, bacterial killing by these peptides appears to occur by distinct mechanisms. Formate enhances bacterial resistance to P2, as previously demonstrated, but not to Crp4. Both sigma(E) and cytoplasmic membrane-associated formate dehydrogenase are required for the protective effect of formate against P2. In contrast to P2, Crp4 does not inhibit bacterial respiration at lethal concentrations. However, both peptides induce expression of rpoE, suggesting that they trigger a common mechanism for sensing extracytoplasmic stress.  相似文献   

2.
Mutation of a single gene, referred to as selA1 in Salmonella typhimurium and as selD in Escherichia coli, results in the inability of these organisms to insert selenium specifically into the selenopolypeptides of formate dehydrogenase and into the 2-selenouridine residues of tRNAs. The mutation does not involve transport of selenite into the cell or reduction of selenite to selenide since both mutant strains synthesize selenocysteine and selenomethionine from added selenite and incorporate these selenoamino acids non-specifically into numerous proteins of the bacterial cells. Complementation of the mutation in S. typhimurium with the selD gene from E. coli indicates functional identity of the selA1 and selD genes. Although the selA1 gene maps at approximately 21 min on the S. typhimurium chromosome and the selD gene at approximately 38 min on the E. coli chromosome, only a single gene in wild-type S. typhimurium hybridized to the E. coli selD gene probe. Transformation of the mutant Salmonella strain with a plasmid bearing the E. coli selD gene restored formate dehydrogenase activity, 75Se incorporation into formate dehydrogenase seleno-polypeptides and [75Se]seleno-tRNA synthesis. Transformation with an additional plasmid carrying an E. coli formate dehydrogenase selenopolypeptide-lacZ gene fusion showed that the selD gene allowed readthrough of the UGA codon and synthesis of beta-galactosidase in the Salmonella mutant.  相似文献   

3.
4.
Hancock RE  McPhee JB 《Cell》2005,122(3):320-322
The bacterial pathogen Salmonella typhimurium resides within phagosomes in host cells and is able to deflect the host immune response. In this issue of Cell, Bader et al. (2005) decipher an elegant mechanism by which the PhoQ sensor kinase of Salmonella is switched on by host cationic antimicrobial peptides, leading to changes in gene expression that enable Salmonella to combat the host immune response.  相似文献   

5.
粉纹夜蛾离体细胞抗菌肽的抗菌谱测定   总被引:8,自引:0,他引:8  
用热灭活的大肠杆菌DHSQ诱导粉纹夜蛾(Trichoplusia ni)离体细胞产生抗菌肽,用三氯乙酸沉淀法提取出该活性物质,采用琼脂糖孔穴扩散法和生长抑制测定法测定其抗菌谱,发现该抗菌物质具有较广的抗微生物活性,其中特别是对革兰氏阴性菌中的沙门氏茵和大肠杆茵,酵母菌中的白色念珠菌,植物病源真茵中的花生白绢病茵和小麦赤霉病茵具有较强的抑菌活性,从而表明该物质是一种既抗细菌,又抗真菌的抗微生物肽。  相似文献   

6.
Myeloperoxidase, a granule-associated enzyme of neutrophils and monocytes, combines with H2O2 and chloride to form a potent microbicidal system that contributes to phagocyte antimicrobial activity. The nature of the lesion or lesions induced by the myeloperoxidase system which are responsible for the loss of microbial replicative activity (viability) remains unknown. Using Escherichia coli grown to late log or stationary phase under conditions of low aeration with succinate as the sole carbon source, we found that myeloperoxidase-induced loss of microbial viability could be correlated with a decrease in succinate-dependent respiration (succinate oxidase activity). Succinate dehydrogenase activity fell rapidly to undetectable levels during incubation with the myeloperoxidase system, suggesting that damage to the dehydrogenase was a major factor in the loss of oxidase activity. Other components of the succinate oxidase system were resistant to the actions of myeloperoxidase. The ubiquinone-8 and cytochrome components of the respiratory chain remained nearly constant in amount despite reduction of respiration to undetectable levels. However, as expected from the loss of succinate dehydrogenase activity, succinate-ubiquinone reductase and succinate-cytochrome reductase activities were markedly impaired. We propose that the loss of E. coli viability induced by the myeloperoxidase-H2O2-chloride system is due in part to the loss of electron transport function consequent to the oxidation of critical catalytic centers in susceptible dehydrogenases.  相似文献   

7.
Microcin J25 (MccJ25) is a plasmid-encoded, ribosomally synthesized antibacterial peptide with a unique lasso structure. The lasso structure, produced with the aid of two processing enzymes, provides exceptional stability to MccJ25. We report the synthesis of six peptides (1-6), derived from the MccJ25 sequence, that are designed to form folded conformation by disulfide bond formation and electrostatic or hydrophobic interactions. Two peptides (1 and 6) display good activity against Salmonella newport, and are the first synthetic derivatives of MccJ25 that are bactericidal. Peptide 1 displays potent activity against several Salmonella strains including two MccJ25 resistant strains. The solution conformation and the stability studies of the active peptides suggest that they do not fold into a lasso conformation and peptide 1 displays antimicrobial activity by inhibition of target cell respiration. Like MccJ25, the synthetic MccJ25 derivatives display minimal toxicity to mammalian cells suggesting that these peptides act specifically on bacterial cells.  相似文献   

8.
A common stress encountered by Salmonella serovars involves exposure to membrane-permeabilizing antimicrobial peptides and proteins such as defensins, cationic antibacterial proteins, and polymyxins. We wanted to determine if starvation induces cross-resistance to the membrane-permeabilizing antimicrobial peptide polymyxin B (PmB). We report here that starved and stationary-phase (Luria-Bertani [LB] medium) cells exhibited ca. 200- to 1,500-fold-higher (cross-)resistance to a 60-min PmB challenge than log-phase cells. Genetic analysis indicates that this PmB resistance involves both phoP-dependent and -independent pathways. Furthermore, both pathways were sigma(S) independent, indicating that they are different from other known sigma(S) -dependent cross-resistance mechanisms. Additionally, both pathways were important for PmB resistance early during C starvation and for cells in stationary phase in LB medium. However, only the phoP-independent pathway was important for P-starvation-induced PmB resistance and the sustained PmB resistance seen in 24-h-C-starved (and N-starved) or stationary-phase cells in LB medium. The results indicate the presence of an rpoS- and phoP-independent pathway important to starvation- and stationary-phase-induced resistance to membrane-permeabilizing antimicrobial agents.  相似文献   

9.
Lipid-specific membrane activity of human beta-defensin-3   总被引:2,自引:0,他引:2  
Defensins represent a major component of innate host defense against bacteria, fungi, and enveloped viruses. One potent defensin found, e.g., in epithelia, is the polycationic human beta-defensin-3 (hBD3). We investigated the role of the lipid matrix composition, and in particular the presence of negatively charged lipopolysaccharides (LPS) from sensitive (Escherichia coli, Salmonella enterica serovar Minnesota) or resistant (Proteus mirabilis) Gram-negative bacteria or of the zwitterionic phospholipids of human cells, in determining the action of polycationic hBD3 on the different membranes, and related to their biological activity. The main focus was directed on data derived from electrical measurements on a reconstitution system of the OM as a planar asymmetric bilayer composed on one side of LPS and on the other of a phospholipid mixture. Our results demonstrate that the antimicrobial activity and the absence of cytotoxicity can be explained by the lipid-specificity of the peptide. A clear correlation between these aspects of the biological activity of hBD3 and its interaction with lipid matrices could be found. In particular, hBD3 could only induce lesions in those membranes resembling the lipid composition of the OM of sensitive bacterial strains. The permeation through the membrane is a decisive first step for the biological activity of many antimicrobial peptides. Therefore, we propose that the lipid-specificity of hBD3 as well as some other membrane-active antimicrobial peptides is important for their activity against bacteria or mammalian cells.  相似文献   

10.
11.
抗菌肽作为新一代抗生素的潜在应用价值使其备受关注,大量高纯度的抗菌肽是开展基础及临床实验的关键。天然来源的抗菌肽资源有限、纯化困难,化学合成抗菌肽成本高、活性不稳定,因此通过基因重组表达得到大量抗菌肽是低成本、高效益的方法。目前采用大肠杆菌表达系统获得抗菌肽已成为研究者的首选,通常以形成融合蛋白的方式表达,这不仅可避免抗菌肽对宿主的杀伤作用,也保护了抗菌肽免受蛋白酶降解。文章结合课题组的研究工作,综述了近年来抗菌肽在大肠杆菌中表达的融合载体、融合蛋白的裂解方法及表达条件优化的研究进展。  相似文献   

12.
A novel method for cloning of genes coding for cytotoxic molecules based on a cell viability assay is described. The working hypothesis is that expression of DNA sequences coding for cytotoxic molecules in bacterial cells will lead to cell death or impairment, and the isolation of the impaired or dead cells could lead to identification of DNA sequences responsible for debilitating the host cells. We verified this concept by isolating the well known antimicrobial Puroindoline b gene in Escherichia coli cells. We further demonstrated the feasibility to use this approach for isolating DNA encoding for antimicrobials from cDNA expression libraries. Sequence analysis and bioassay indicated that the isolated clones encoded previously characterized antimicrobial proteins (AMPs), proteins not previously characterized as AMPs, as well as novel antimicrobial peptides. In addition, clones harboring ribosomal protein encoding cDNA were also identified. Therefore, this method could also be used to identify host genes important in maintaining bacterial cell viability.  相似文献   

13.
The intra-generic inhibition of bacterial growth observed previously in vivo and in vitro with strains of Salmonella, Citrobacter and E. coli was studied in vitro using S. typhimurium strain F98. There was complete inhibition of multiplication of S. typhimurium when it was added to stationary-phase broth cultures of different Salmonella serotypes, but only partial inhibition when added to broth cultures of E. coli. The degree of inhibition between different mutants of F98 was affected by the numbers of bacteria of the inhibiting strain, but this was not the only factor, since exponential-phase bacterial cells were less inhibitory than stationary-phase cells. The inhibitory effect was produced at temperatures between 20 degrees C and 40 degrees C. The complete inhibition of growth observed between F98 mutants was abolished by ampicillin, rifampicin and streptomycin, but not by nalidixic acid. Inhibition was also prevented by separating the two cultures by a dialysis membrane. A TnphoA insertion mutant of F98 was produced which did not show inhibition in vitro but was still inhibitory in vivo. It is suggested that this complete inhibition of bacterial multiplication between organisms of the same genus, which is greater than that produced between organisms from different genera, is mediated by a cell surface protein.  相似文献   

14.
Cranberry-derived compounds, including a fraction known as proanthocyanidins (PACs) exhibit anti-microbial, anti-infective, and anti-adhesive properties against a number of disease-causing organisms. In this study, the effect of cranberry proanthocyanidins (CPACs) on the infection of epithelial cells by two enteric bacterial pathogens, enteropathogenic Escherichia coli (EPEC) and Salmonella Typhimurium was investigated. Immunofluorescence data showed that actin pedestal formation, required for infection by enteropathogenic Escherichia coli (EPEC), was disrupted in the presence of CPACs. In addition, invasion of HeLa cells by Salmonella Typhimurium was significantly reduced, as verified by gentamicin protection assay and immunofluorescence. CPACs had no effect on bacterial growth, nor any detectable effect on the production of bacterial effector proteins of the type III secretion system. Furthermore, CPACs did not affect the viability of host cells. Interestingly, we found that CPACs had a potent and dose-dependent effect on the host cell cytoskeleton that was evident even in uninfected cells. CPACs inhibited the phagocytosis of inert particles by a macrophage cell line, providing further evidence that actin-mediated host cell functions are disrupted in the presence of cranberry CPACs. Thus, although CPAC treatment inhibited Salmonella invasion and EPEC pedestal formation, our results suggest that this is likely primarily because of the perturbation of the host cell cytoskeleton by CPACs rather than an effect on bacterial virulence itself. These findings have significant implications for the interpretation of experiments on the effects of CPACs on bacteria-host cell interactions.  相似文献   

15.
Intracellular Salmonella inhibit antigen presentation by dendritic cells   总被引:3,自引:0,他引:3  
Dendritic cells (DC) are important APCs linking innate and adaptive immunity. During analysis of the intracellular activities of Salmonella enterica in DC, we observed that viable bacteria suppress Ag-dependent T cell proliferation. This effect was dependent on the induction of inducible NO synthase by DC and on the function of virulence genes in Salmonella pathogenicity island 2 (SPI2). Intracellular activities of Salmonella did not affect the viability, Ag uptake, or maturation of DC, but resulted in reduced presentation of antigenic peptides by MHC class II molecules. Increased resistance to reinfection was observed after vaccination of mice with SPI2-deficient Salmonella compared with mice vaccinated with SPI2-proficient Salmonella, and this correlated with an increased amount of CD4(+) as well as CD8(+) T cells. Our study is the first example of interference of an intracellular bacterial pathogen with Ag presentation by DC. The subversion of DC functions is a novel strategy deployed by this pathogen to escape immune defense, colonize host organs, and persist in the infected host.  相似文献   

16.
Antimicrobial peptides, or host defense peptides, are universal signaling and effector molecules in host defense and innate immunity. This article highlights various tools developed for cathelicidins and defensins, ranging from peptide identification, production, and structural biology, including the eight databases for antimicrobial peptides. Novel peptides can be identified from natural sources at both gene and protein levels. Solid-phase synthesis and bacterial expression are the two important methods for peptide production. Three-dimensional structures of antimicrobial peptides, primarily determined by solution NMR techniques, are essential for an in-depth understanding of the mode of action. The introduction of octanoyl phosphatidylglycerol as a bacterial membrane-mimetic model provides new insights into peptide-lipid interactions. The incorporation of structure and activity data into the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html) will lead to an integrated understanding of these peptides via structural bioinformatics.  相似文献   

17.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

18.
We investigated the role in pathogenesis of bacterial resistance to plant antimicrobial peptides. The sapA to sapF (for sensitive to antimicrobial peptides) operon from the pathogenic bacterium Erwinia chrysanthemi has been characterized. It has five open reading frames that are closely related (71% overall amino acid identity) and are in the same order as those of the sapA to sapF operon from Salmonella typhimurium. An E. chrysanthemi sap mutant strain was constructed by marker exchange. This mutant was more sensitive than was the wild type to wheat alpha-thionin and to snakin-1, which is the most abundant antimicrobial peptide from potato tubers. This mutant was also less virulent than was the wild-type strain in potato tubers: lesion area was 37% that of the control, and growth rate was two orders of magnitude lower. These results indicate that the interaction of antimicrobial peptides from the host with the sapA to sapF operon from the pathogen plays a similar role in animal and in plant bacterial pathogenesis.  相似文献   

19.
It has been reported that it is difficult to express cationic antibacterial peptides in engineered bacteria because such peptides are highly toxic to the host bacteria cells and sensitive to intracellular proteases. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi and tumor cells, which may possibly be used as an antimicrobial agent. Here we tried to express ABP-CM4 in Escherichia coli cells using either the GST fusion system or the intein-mediated fusion expression system. In order to investigate the possible use of these two fusion partners in cationic small peptide expression and purification, a mutant ABP-CMt, which is a highly positively charged peptide with +9 charges at neutral pH, was designed. In the present study, we have shown that both ABP-CM4 and ABP-CMt peptides can be expressed and purified by the intein-mediated expression system but not by the GST fusion expression system. Thus the intein-mediated peptide expression and purification system potentially could be employed for the production of recombinant protease-sensitive and cytotoxic peptides.  相似文献   

20.
The ability of invading pathogens to proliferate within host tissues requires the capacity to resist the killing effects of a wide variety of host defense molecules. sap mutants of the facultative intracellular parasite Salmonella typhimurium exhibit hypersensitivity to antimicrobial peptides, cannot survive within macrophages in vitro and are attenuated for mouse virulence in vivo. We conducted a molecular genetic analysis of the sapG locus and showed that it encodes a product that is 99% identical to the NAD+ binding protein TrkA, a component of a low-affinity K+ uptake system in Escherichia coli. SapG exhibits similarity with other E. coli proteins implicated in K+ transport including KefC, a glutathione-regulated efflux protein, and Kch, a putative transporter similar to eukaryotic K+ channel proteins, sapG mutants were killed by the antimicrobial peptide protamine in the presence of both high and low K+, indicating that protamine hypersensitivity is not due to K+ starvation. Strains with mutations in sapG and either sapJ or the sapABCDF operon were as susceptible as sapG single mutants, suggesting that the proteins encoded by these loci participate in the same resistance pathway. SapG may modulate the activities of SapABCDF and SapJ to mediate the transport of peptides and potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号