首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish a murine model for house dust mite allergy to purified mite allergens, we studied the immune response to two major mite allergens, native Dermatophagoides farinae 1 (nDer f 1) and recombinant Der f 2 (rDer f 2), and crude mite extract in four mouse strains, A/J, BALB/c, C57BL/6, and C3H/He. Mice were immunized with mite extract, nDer f 1 or rDer f 2, three times at 2-week intervals. Then mice were examined to determine status of sensitization to the antigen. Anti-mite extract IgE production was induced in all strains, and plasma IgE concentration did not differ much among the four strains. In contrast, IgE response to nDer f 1 and rDer f 2 indicated an intra-strain difference. The A/J mice had high responses to both antigens, whereas BALB/c did not respond to rDer f 2. The C57BL/6 and C3H/He mice had moderate to low IgE responses to nDer f 1 and rDer f 2. Immediate airway constriction was provoked by inhalation of mite extract or rDer f 2 in sensitized mice, and the degree of the immediate response was almost proportional to antigen-specific IgE concentration. We concluded that immunization of inbred mice with nDer f 1 and rDer f 2 achieved sensitization to mite allergens. Among the four strains, A/J mice with H-2a haplotype were the highest responder to mite allergens.  相似文献   

2.
Serum IgE directed against Der f 1, a protease found in the feces of Dermatophagoides farinae, correlates well with allergic sensitization to house dust mite in humans and is a risk factor for developing asthma. Native Der f 1 (nDer f 1) is produced as a pre-pro form and processed to an approximately 25-kDa mature form. We have expressed recombinant forms of Der f 1 (rDer f 1) in Pichia pastoris using AOX1-promoter expression vectors. Fusion of either the pro-enzyme form or the mature form to the Saccharomyces cerevisiae alpha factor pre-pro sequence resulted in secretion of the mature form of the protein from P. pastoris. The secreted protein was heterogeneously glycosylated at a single N-glycosylation site and had an apparent molecular mass of 35-50 kDa. Both the alpha factor signal peptide and the pro-enzyme region were efficiently processed during secretion. A version of the pro-enzyme with a mutated consensus N-linked glycosylation site was secreted from P. pastoris as a mature, unglycosylated, approximately 25-kDa protein. The IgE binding activity of this unglycosylated rDer f 1 was similar to that of glycosylated forms produced by P. pastoris and to nDer f 1 obtained from mites. Thus, oligosaccharides are not required for secretion from P. pastoris or for IgE binding in vitro. Recombinant and native versions of Der f 1 displayed protease activity on casein zymogram gels. The availability of a highly purified recombinant Der f 1 will facilitate experimental and clinical studies of mite allergy.  相似文献   

3.
House dust mite allergens have been well established as sensitizing agents that are important in the induction of allergic diseases. In order to analyze epitopes of the allergen and to develop a quantitative method of the allergen exposure, monoclonal antibodies against a recombinant Der p 2 (rDer p 2), one of the major allergens of Dermatophagoides pteronyssinus, were produced. Four monoclonal antibodies produced were species-specific and did not cross-react to the D. farinae crude extract. Two of the monoclonal antibodies were found to be IgG1 and the others were IgM. For the analysis of epitopes, a Der p 2 cDNA encoding 126 amino acids (aa) was dissected into three fragments with several overlapping peptides. A (aa residues 1-49), B (44-93), and C fragment (84-126). Three monoclonal antibodies showed reactivities to the recombinant B fragment and to the full-length rDer p 2, but one monoclonal antibody reacted only with the full-length rDer p 2. Two-site capture ELISA was developed using two different monoclonal antibodies for quantitating Der p 2 in house dust. The sensitivity limit was 4 ng/ml with rDer p 2 and 8 micrograms/ml with the D. pteronyssinus crude extract. The result suggested that the assay using monoclonal antibodies against rDer p 2 could be useful for the environmental studies and for the standardization of mite allergen extracts.  相似文献   

4.
IgE-mediated allergic response involves cross-linking of IgE bound on mast cells by specific surface epitopes of allergens. Structural studies on IgE epitopes of allergens are essential in understanding the characteristics of an allergen and for development of specific allergen immunotherapy. We have determined the structure of a group 13 dust mite allergen from Dermatophagoides farinae, Der f 13, using nuclear magnetic resonance. Sequence comparison of Der f 13 with homologous human fatty acid-binding proteins revealed unique surface charged residues on Der f 13 that may be involved in IgE binding and allergenicity. Site-directed mutagenesis and IgE binding assays have confirmed four surface charged residues on opposite sides of the protein that are involved in IgE binding. A triple mutant of Der f 13 (E41A_K63A_K91A) has been generated and found to have significantly reduced IgE binding and histamine release in skin prick tests on patients allergenic to group 13 dust mite allergens. The triple mutant is also able to induce PBMC proliferation in allergic patients with indices similar to those of wild-type Der f 13 and shift the secretion of cytokines from a Th2 to a Th1 pattern. Mouse IgG serum raised using the triple mutant is capable to block the binding of IgE from allergic patients to wild-type Der f 13, indicating potential for the triple mutant as a hypoallergen for specific immunotherapy. Findings in this study imply the importance of surface charged residues on IgE binding and allergenicity of an allergen, as was also demonstrated in other major allergens studied.  相似文献   

5.
The mature cysteine protease from Dermatophgoides pteronyssinus, Der p 1, is a major house dust mite allergen. Its enzymatic activity has been shown to have pro-inflammatory effects that could also negatively influence efficacy of allergen-specific immunotherapy. The aim of this study was to express recombinant pro-Der p 1 (rpro-Der p 1) in the yeast Pichia pastoris and to study its maturation. Expression was achieved at a concentration ranging from 45 mg.L-1 (methanol-induced expression) to 168 mg.L-1 (constitutive expression). No significant spontaneous maturation of the secreted proenzyme was observed. rpro-Der p 1 with a sequence-based molecular mass of 34 kDa was hyperglycosylated by the yeast, migrating at 50-60 kDa on SDS/PAGE. Compared with its natural counterpart (nDer p 1), the recombinant proenzyme demonstrated decreased IgE reactivity, resulting in a 30-fold lower capacity to induce histamine release from human basophils. Decreased immunoreactivity was also shown by competitive RIA and sandwich ELISA with Der p 1-specific antibody reagents. CD spectra of rpro-Der p 1 and nDer p 1 revealed significant structural differences. Deglycosylation of rpro-Der p 1 with endoglycosidase H resulted in a decrease in apparent molecular mass from 50 kDa to 34 kDa, but did not affect nDer p 1. On removal of N-glycans from rpro-Der p 1, which harbours two putative N-glycosylation sites in both propeptide and mature sequence, the mature rDer p 1 appeared. This suggests that hyperglycosylation hampers spontaneous maturation. Maturation of the recombinant pro-enzyme was also achieved by addition of the active natural cysteine protease, nDer p 1. In conclusion, high-level expression of rpro-Der p 1 in P. pastoris results in a stable hypoallergenic proenzyme with potential for use in allergen-specific immunotherapy.  相似文献   

6.
The repertoire of antigenic sites on two major dust mite allergens, Der p I of Dermatophagoides pteronyssinus and Der f I of D. farinae, was studied using murine (BALB/c) monoclonal antibodies (Mab), polyclonal rabbit IgG antibodies, and human IgE antibodies. Fifty-three IgG Mab were analyzed from six different fusions (five vs Der p I, one vs Der f I). By antigen binding radioimmunoassay (RIA), most Mab were either Der p I or Der f I specific, and only 2/53 bound to both allergens. Epitope mapping studies using cold Mab to inhibit the binding of six 125I labeled Mab to solid phase allergen defined four nonrepeated, nonoverlapping epitopes on Der p I, a single species-specific epitope on Der f I and a cross-reacting epitope present on each allergen. All but one of the 53 Mab bound to one of these six epitopes. Seventy percent (25/35) of anti-Der p I Mab were directed to the same epitope, suggesting that this epitope is immunodominant for BALB/c mice. Similarly, 88% (16/18) of anti-Der f I Mab bound to the same epitope on Der f I. Parallel cross-inhibition curves were obtained using the species-specific Mab, 10B9, and the cross-reacting Mab, 4C1, to compete for binding to Der p I, suggesting that the epitopes defined by these two Mab on Der p I are adjacent to one another. Both murine Mab and polyclonal rabbit IgG antibodies to cross-reacting sites on both allergens were used to inhibit binding of human IgE antibodies to Der p I by using 19 sera from mite allergic patients. Cross-reacting rabbit IgG antibodies strongly inhibited all sera tested (mean 79.5% +/- 7.7) and two Mab, 10B9 and 4C1, partially inhibited (38% +/- 12). However, the four Mab directed against separate species-specific epitopes (including murine immunodominant sites) showed little or no inhibition (less than or equal to 20%). Our results suggest that most of the epitopes defined by Mab are not the same as, or close to, those defined by human IgE antibody. The striking differences in the repertoires of murine IgG and human IgE antibody responses to Der p I and Der f I could be explained by genetic differences or by altered antigen processing and presentation occurring as a result of different modes of immunization in mice and in mite allergic humans.  相似文献   

7.
cDNA clones encoding a major house dust mite allergen, Der f 1, were isolated from a Dermatophagoides farinae cDNA library by plaque immunoscreening using rabbit anti-Der f 1 serum. The sequences cover the complete open reading frame encoding the prepro-form. The sequence is different from previously reported cDNA of Der f 1 in six bases and the encoded amino acid sequence is different in two residues. Pro-forms of Der f 1 and its mutant, in which the N-glycosylation motif was disrupted, expressed in Pichia pastoris were converted to the mature forms by an in vitro activation process and they showed significant IgE-binding. The biologically active rDer f 1 molecules would be useful for diagnostic testing and allergen-specific immunotherapy. In contrast, Der f 1 directly expressed in Escherichia coli without the prosequence had very low IgE binding. The hypoallergenic Der f 1 polypeptide could be useful for safer and more effective immunotherapy.  相似文献   

8.
Home dust mite derived materials are known to be a major source of problematic inhalant allergens. The aim of this study was to determine the localization of the group 3 allergen, Der f 3, within Dermatophagoides farinae, in order to assess the relative importance of excreted materials and nonexcreted body components as allergen sources. Recombinant Der f 3 (rDer f 3) was expressed in bacteria and purified as an immunogen for production of monoclonal antibodies (mAb) against it. Dermatophagoides farinae mites and their faecal pellets were embedded in paraffin, and serial sections were immunoprobed with mAb clone 3D3 against Der f 3. D. farinae midgut mucosa, gut contents and faecal pellets were strongly immunopositive for Der f 3. Der f 3 immunoreactive products were not detected in any other internal organs of the mite. These results suggest that Der f 3 allergen may be synthesized in and secreted from the digestive tract and excreted from the mite’s body in the faecal pellets.  相似文献   

9.
The response of Strain 2 guinea pigs to immunization with thyroid extract in complete adjuvant was compared with the response of the Hartley strain. The Strain 2 did not develop thyroiditis as frequently or in as great a degree as the Hartley strain. This difference in degree of thyroiditis between these two strains occurred consistently even when the animals were immunized with a wide range of doses of thyroid extract and of mycobacteria in adjuvant, and was independent of the strain origin of the antigen used for immunization. Although the Strain 2 made less thyroiditis than the Hartley strain, it made as much agglutinating antibody, and often as much delayed sensitivity as the Hartley strain. The genetic controls regulating autoimminity to the thyroid and production of thyroiditis appear to differ from those regulating production of experimental allergic encephalomyelitis.  相似文献   

10.
House dust mites produce potent allergens, Der p 1 and Der f 1, that cause allergic sensitization and asthma. Der p 1 and Der f 1 are cysteine proteases that elicit IgE responses in 80% of mite-allergic subjects and have proinflammatory properties. Their antigenic structure is unknown. Here, we present crystal structures of natural Der p 1 and Der f 1 in complex with a monoclonal antibody, 4C1, which binds to a unique cross-reactive epitope on both allergens associated with IgE recognition. The 4C1 epitope is formed by almost identical amino acid sequences and contact residues. Mutations of the contact residues abrogate mAb 4C1 binding and reduce IgE antibody binding. These surface-exposed residues are molecular targets that can be exploited for development of recombinant allergen vaccines.  相似文献   

11.
The X-ray structure of the group 2 major allergen from Dermatophagoides farinae (Der f 2) was determined to 1.83 A resolution. The overall Der f 2 structure comprises a single domain of immunoglobulin fold with two anti-parallel beta-sheets. A large hydrophobic cavity is formed in the interior of Der f 2. Structural comparisons to distantly related proteins suggest a role in lipid binding. Immunoglobulin E (IgE) cross-reactivity between group 2 house dust mite major allergens can be explained by conserved surface areas representing IgE binding epitopes.  相似文献   

12.
Random-bred Hartley and inbred Strain 2 and Strain 13 guinea pigs were inoculated for acute experimental autoimmune encephalomyelitis (EAE). Sixty-six percent (69/103) of the Hartleys developed signs of EAE while the remaining 34% (34/103) were resistant. No Strain 2 and all Strain 13 guinea pigs developed EAE. Histologic examination of nervous tissue revealed that susceptible Hartleys and Strain 13 and Strain 2 animals had lesions characteristic of EAE. Tissue from resistant Hartleys showed fewer and less severe changes. Lymphocyte-transformation assays with EAE-inducing and noninducing antigens and T-cell mitogens revealed three different sets of responses in vitro: (i) lymphocytes from all animals responded to mitogens; (ii) lymphocytes from susceptible animals responded to EAE-inducing antigens; and (iii) lymphocytes from resistant Hartleys were suppressed from responding to the mitogens solely by EAE-inducing antigens. Plasmas from all EAE-sensitized animals had equivalent anti-myelin basic proteins (MBP) antibody titers and skin tests of EAE-inoculated Hartleys were all positive for MBP sensitization. Therefore, resistance and reduced histologic changes characteristic of EAE correlated with a disease-specific antigen-induced suppression of lymphocyte responses to T-cell mitogens. This suggests that clinical resistance to EAE in Hartley guinea pigs is mediated by an immunologic suppressor mechanism.  相似文献   

13.
The group 1 mite allergens Der f 1 and Der p 1 are potent allergens excreted by Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively. The human immunoglobulin E antibody responses to the group 1 allergens show more cross-reactivity than the murine immunoglobulin G antibody responses, which are largely species specific. Here, we report the crystal structure of the mature form of Der f 1, which was isolated from its natural source, and a new high-resolution structure of mature recombinant Der p 1. Unlike Der p 1, Der f 1 is monomeric both in the crystalline state and in solution. Moreover, no metal binding is observed in the structure of Der f 1 despite the fact that all amino acids involved in Ca2+ binding in Der p 1 are completely conserved in Der f 1. Although Der p 1 and Der f 1 share an extensive sequence identity, comparison of the crystal structures of both allergens revealed structural features that could explain the differences in murine IgG and human IgE antibody responses to these allergens. There are structural differences between Der f 1 and Der p 1 that are unevenly distributed on the allergens' surfaces. This uneven spatial arrangement of conserved versus altered residues could explain both the specificity and cross-reactivity of antibodies against Der f 1 and Der p 1.  相似文献   

14.

Background

Allergic asthma is caused by abnormal immunoreactivity against allergens such as house dust mites among which Dermatophagoides farinae (Der f) is a common species. Currently, immunotherapy is based on allergen administration, which has variable effect from patient to patient and may cause serious side effects, principally the sustained risk of anaphylaxis. DNA vaccination is a promising approach by triggering a specific immune response with reduced allergenicity.

Objective

The aim of the study is to evaluate the effects of DNA immunization with Der f1 allergen specific DNA on allergic sensitization, inflammation and respiratory function in mice.

Methods

Mice were vaccinated 28 and 7 days before allergen exposure with a Der f1-encoding plasmid formulated with a block copolymer. Asthma was induced by skin sensitization followed by intra-nasal challenges with Der f extract. Total lung, broncho-alveolar lavage (BAL) and spleen cells were analyzed by flow cytometry for their surface antigen and cytokine expression. Splenocytes and lung cell IFN-γ production by CD8+ cells in response to Der f CMH1-restricted peptides was assessed by ELISPOT. IgE, IgG1 and IgG2a were measured in serum by ELISA. Specific bronchial hyperresponsiveness was assessed by direct resistance measurements.

Results

Compared to animals vaccinated with an irrelevant plasmid, pVAX-Der f1 vaccination induced an increase of B cells in BAL, and an elevation of IL-10 and IFN-γ but also of IL-4, IL-13 and IL-17 producing CD4+ lymphocytes in lungs and of IL-4 and IL-5 in spleen. In response to CD8-restricted peptides an increase of IFN-γ was observed among lung cells. IgG2a levels non-specifically increased following block copolymer/DNA vaccination although IgE, IgG1 levels and airways resistances were not impacted.

Conclusions & Clinical Relevance

DNA vaccination using a plasmid coding for Der f1 formulated with the block copolymer 704 induces a specific immune response in the model of asthma used herein.  相似文献   

15.
Although mite major group 1 allergens, Der p 1 and Der f 1, were first isolated as cysteine proteases, some studies reported that natural Der p 1 exhibits mixed cysteine and serine protease activity. Clarifying whether the serine protease activity originates from Der p 1 or is due to contamination is important for distinguishing between the pathogenic proteolytic activities of group 1 allergens and mite-derived serine proteases. Recombinant mite group 1 allergens would be useful tool for addressing this issue, because they are completely free from contamination by mite serine proteases. Recombinant Der p 1 and Der f 1, and highly purified natural forms exhibited only cysteine protease activity. However, commercially available natural forms exhibited both activities, but the two activities were eluted into different fractions in size-exclusion column chromatography. The substrate specificity associated with the serine protease activity was similar to that of Der f 3. These results indicate that the serine protease activity does not originate from group 1 allergens.  相似文献   

16.
The most important indoor allergens for humans are house dust mites (HDM). Fourteen Dermatophagoides farinae allergens (Der f 1–3, 6, 7, 10, 11, 13–18, and 22) are reported although more than 30 allergens have been estimated in D. farinae. Seventeen allergens belonging to 12 different groups were identified by a procedure of proteomics combined with two-dimensional immunoblotting from D. farina extracts. Their sequences were determined by Edman degradation, mass spectrometry analysis, and cDNA cloning. Their allergenicities were assayed by enzyme-linked immunosorbent assay inhibition tests, immunoblots, basophil activation test, and skin prick tests. Eight of them are the first report as D. farinae allergens. The procedure of using a proteomic approach combined with a purely discovery approach using sera of patients with broad IgE reactivity profiles to mite allergens was an effective method to investigate a more complete repertoire of D. farinae allergens. The identification of eight new D. farinae allergens will be helpful for HDM allergy diagnosis and therapy, especially for patients without response for HDM major allergens. In addition, the current work significantly extendedthe repertoire of D. farinae allergens.The house dust mites (HDM)1 are major sources of indoor allergens for humans, which induce asthma, rhinitis, dermatitis, and other allergic diseases (1). Extensive studies have been conducted to understand the biological, chemical, and structural properties of dust mite allergens. Most of the best characterized allergens are from dust mites Dermatophagoides pteronyssinus and D. farinae (Acari: Pyroglyphidae). Twenty-three groups of dust mite allergens are listed in the (IUIS) nomenclature data set, and 21 of them have been identified from Dermatophagoides spp (http://www.allergen.org/). There is an extreme diversity of dust mite allergens. Western blotting studies with human sera containing high levels of anti-mite IgE showed more than 32 bands with molecular weights ranging from 11 to greater than 100 kDa (2). Two groups of mite allergens (group 1 and 2) have been extensively studied. They are a 25-kDa cysteine protease and a 14-kDa epididymal protein, respectively. More than 80% of humans with house dust mite allergy mount an IgE response to the group 1 and more than 90% to the group 2 (36).The group 1 and 2 molecules are major allergens in HDMs but about 20% of patients do not have IgE antibody to the two group allergens (3). It has been found that there are also many other HDM allergens containing high IgE binding activity although these are present in low and variable concentrations in mite extracts (minor allergens), usually at less than 1% of the group 1 and 2 allergens (3). Allergens present in low amount in mite extracts, which can induce high titers of IgE, suggest that they are potent at low concentration. Another possibility is that the amount of allergen required to induce allergic responses in the airways is more than that required to induce IgE. It has been estimated that there are at least 30 allergens in the extracts of D. farinae by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) combined with autoradiography analysis (7). Two-dimensional (2-D) immunoblotting has been applied to study mapping of D. farinae mite allergens (7). Seven allergens including Der f 1, Der f 2, Der f 3, Der f 4, Der f 5, and 2 high molecular mass allergens, which share significant homologies with allergen Mag 3 from D. farinae and with a chitinase from prawn Penaeus japonicus, have been identified from the 2-D immunoblotting analysis (7). Up to now, 14 allergens from D. farinae have been named. Most of them are in the molecular weight range of 14 to 60 kDa. Given the extreme diversity of mite allergens, many investigations with novel allergen identification are still in progress or are yet to be undertaken. It is well known that many mite allergens are not identified on the basis of two possible reasons: (1) it is difficult to purify and characterize minor allergens because they present in low concentration in mite extracts; (2) some minor allergens are neglected because of their minor amount or abilities to only induced allergy to a minor population. It is necessary to develop efficient procedure with high accuracy and resolution to purify and characterize allergens from mite extracts. In this work, 17 allergens or their isoforms have been identified from the mite extracts of D. farinae by a procedure of proteomics combined with two-dimensional immunoblotting. Eight of them are the first to be reported as mite allergens.  相似文献   

17.
Main indoor allergens for humans are from house dust mites. There are more than 30 allergens in Dermatophagoides farinae but only fourteen allergens have been identified from this mite including Der f 1–3, 6, 7, 10, 11, 13–18, and 22. A native allergen protein (Der f 24, 90 kDa) was purified from D. farinae by gel filtration and anionic exchange liquid chromatography combined with IgE immunodetection. Its primary structure was determined by Edman degradation, mass spectrometry analysis and cDNA cloning. Enzyme-linked immunosorbent assay inhibition tests (ELISA-IT), immunoblots, basophil activation test (BAT) and skin prick test (SPT) were performed to evaluate the allergenicity. It was identified as an alpha (α)-actinin containing a CaM-like domain with EF-hand motifs. Der f 24 reacted to sera from 85.4% (35/41) of patients on western blot analysis. It reduced ∼20% sera IgE reactivity to D. farinae extracts on a competitive ELISA. Eighty percent (8/10) of patients with D. farinae allergy showed positive reactions to Der f 24 in skin prick test. The expression of CD63 on basophils from patients was up-regulated by Der f 24 by ∼5.4-fold. Alpha-actinin was identified as a new type of house dust mite allergen. To the best of our knowledge, this is the first report of α-actinin as an allergen.  相似文献   

18.
The conformational stability of B cell epitopes on the 25-kDa group I and 14-kDa group II mite allergens was compared by using heat-treated or chemically denatured allergens to inhibit the binding of native 125I allergens to murine mAb or to human IgE antibodies. Structural changes after treatment were assessed by SDS-PAGE and circular dichroism spectroscopy. Heating for 1 h at greater than 75 degrees C, treatment at pH 2.0 or pH 12.0, or with 6M guanidine or 6M urea, reduced the binding of the group I allergens to mAb or IgE antibodies by 10- to 1000-fold. The group II allergens were heat stable and even after prolonged heat treatment (5 h at 75 degrees C or 30 min at 100 degrees C) their antibody binding activity was reduced by less than twofold. The group II allergens were also resistant to pH and to denaturation with 6M guanidine. However, after reduction and alkylation, antibody binding sites on both the group I and group II allergens were destroyed. Reduction of disulfide bonds with 2-ME caused a marked shift in the molecular mass of group I allergens on SDS-PAGE, from 25 kDa to 28-31 kDa. Reduction and alkylation also generated two high m.w. forms of Der p I and Der f I. After heating (100 degrees for 30 min), both Der f I and Der f II retained significant secondary structure, as judged by circular dichroism spectroscopy, but on reduction they showed the typical spectra of fully denatured proteins (greater than 85% random structure). The results show clear differences between the susceptibility of B cell epitopes on the group I and group II allergens to denaturation. Despite these differences in stability, both allergens are equally potent immunogens for IgE antibody responses in man. The results support the view that the physical properties of allergens (low m.w. and solubility), limiting low dose exposure (1 to 10 ng/day), and host genetic and immunoregulatory processes, are more important than gross structural features in the induction and maintenance of IgE antibody responses.  相似文献   

19.
Although specific IgE to the storage mite Acarus siro is often detected, there are no detailed studies on IgE reactivity to A. siro in Korea. This study was undertaken to investigate the cross-reactivity to the mite species Dermatophagoides pteronyssinus, Dermatophagoides farinae, Tyrophagus putrescentiae, and A. siro in Korean mite allergic patients. Specific IgE values were determined for the four mite species and a competitive inhibition test was performed for mite extracts using the ImmunoCAP system. The IgE value to D. farinae was the highest among the four mite species tested. There was a strong correlation in the IgE value between house dust mites (D. pteronyssinus and D. farinae) and between storage mites (A. siro and T. putrescentiae). IgE reactivity to A. siro was inhibited by D. farinae and T. putrescentiae extract. Dermatophagoides farinae extract was the strongest inhibitor of IgE binding to A. siro extract, indicating that IgE reactivity to A. siro extract is a cross-reaction caused by sensitization to D. farinae. Strong IgE reactive components were observed in D. farinae and T. putrescentiae extract by SDS-PAGE and IgE immunoblotting. However, no strong IgE-binding component was observed for A. siro. Dermatophagoides farinae is the main source of mite allergens that cause sensitization in Korea. Serum IgE from some of the house dust mite-sensitized patients showed positive responses to storage mite allergens by cross-reaction. Therefore, it is necessary to pay special attention to the diagnosis of mite allergies.  相似文献   

20.
Cutaneous basophil hypersensitivity (CBH) reactions are a heterogeneous group of delayed time course basophil-rich immune responses that can be mediated in the guinea pig by T cells, B cells, or IgG1 antibody. This study examined whether guinea pig IgE antibody could also mediate CBH reactions. IgE antibody to picryl or oxazolone determinants was induced by immunizing Hartley strain guinea pigs pretreated with cyclophosphamide. Hyperimmune serum from these animals was passed through a heavy chain-specific anti-IgG1 affinity column. The presence of IgE anti-hapten antibody in the filtrate fraction was verified by passive cutaneous anaphylaxis (PCA) testing with a 7-day period of local passive sensitization and by the heat lability (56 degrees C, 4 hr) of PCA activity. This IgE-rich fraction and the IgG1 fraction eluted from the column with base (0.2 M Na2CO3, pH 11.3) were transferred i.v. to separate groups of normal guinea pigs. Both fractions mediated delayed time course reactions that contained basophils. Macroscopic and microscopic reactions mediated by the IgE-rich fraction were abolished with heat (56 degrees C, 4 hr). Thus, two antigen-specific factors in guinea pig serum can mediate delayed time course basophil-containing reactions: IgG1 and IgE antibodies. IgE-mediated CBH reactions are similar to the late-phase reaction that follows IgE-dependent wheal-and-flare reactions in humans. The finding that guinea pig IgE can mediate a late reaction that contains basophils makes this a possible model for the human late-phase response, and suggests that some forms of CBH may play a role in human allergic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号