首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compartmentalized ATP pools produced from adenosine are nuclear pools   总被引:4,自引:0,他引:4  
Incubation of African green monkey kidney (BS-C-1) cells and mouse fibroblasts (3T6) in the presence of adenosine for 4 hours resulted in increases in the nuclear compartment pools of adenosine 5'-triphosphate (ATP) and nuclear ATP/adenosine 5'-diphosphate (ADP) ratios. Adenine and inosine, which yield increases in total cellular ATP pools and ATP/ADP ratios similar to those promoted by adenosine, do not produce similar increases in the nuclear compartment. Adenosine-promoted increases in nuclear ATP pools were higher in the untransformed, serially propagated, BS-C-1 cells than in the spontaneously transformed 3T6 cells. Adenosine-promoted compartmentalized ATP pools in primary chick embryo fibroblasts were reduced upon transformation of these cells with Rous sarcoma virus, resulting in free mixing of all of the ATP pools synthesized from various salvage precursors. The growth regulatory properties of the nuclear compartment pools of adenine nucleotides is suggested by the big increases in nuclear ATPase and adenosine 5'-monophosphate (AMP) deaminase activities upon the entry of 3T6 cells into the S phase of their cycle. These enzymatic activities would tend to lower the nuclear ATP/ADP ratios and reduce the total adenine nucleotide pools in these nuclei respectively--conditions which were shown by earlier in vitro studies to be favorable to DNA replication.  相似文献   

2.
Adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A) are stored in large amounts in human platelets. After activation of the platelets both dinucleotides are released into the extracellular milieu where they play a role in the modulation of platelet aggregation and also in the regulation of the vasotone. It has recently been shown that the dinucleotides are degraded by enzymes present in the plasma [Lüthje, J. & Ogilvie, A. (1987) Eur. J. Biochem. 169, 385-388]. The further metabolism as well as the role of blood cells has not been established. The dinucleotides were first degraded by plasma phosphodiesterases yielding ATP (ADP) plus AMP as products which were then metabolized to adenosine and inosine. The nucleosides did not accumulate but were very rapidly salvaged by erythrocytes yielding intracellular ATP as the main product. Although lysates of platelets, leucocytes and red blood cells contained large amounts of Ap3A-degrading and Ap4A-degrading activities, these activities were not detectable in suspensions of intact cells suggesting the lack of dinucleotide-hydrolyzing ectoenzymes. Compared to ATP, which is rapidly degraded by ectoenzymes present on blood cells, the half-life of Ap4A was two to three times longer. Since the dinucleotides are secreted together with ADP and ATP from the platelets, we tested the influence of ATP on the rate of degradation of Ap4A. ATP at concentrations present during platelet aggregation strongly inhibited the degradation of Ap4A in whole blood. It is suggested that in vivo the dinucleotides are protected from degradation immediately after their release. They may thus survive for rather long times and may act as signals even at sites far away from the platelet aggregate.  相似文献   

3.
Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5′-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5′nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5′-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine.  相似文献   

4.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

5.
K K Sakai  D L Hymson  R Shapiro 《Life sciences》1979,24(14):1299-1308
The effect of adenosine 5′-triphosphate (ATP) and its congeners on the alpha-adrenergic neuroeffector transmission in the isolated vas deferens of the guinea pig was evaluated. Both intracellular activity and contractile response of the smooth muscle of the vas deferens were recorded by using the sucrose-gap method. Adenosine, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) influenced alpha-adrenergic receptor-mediated excitatory responses by depolarizing the cell membrane potential. ATP, on the other hand, produced action potentials rather than sustained depolarization, and its activity was blocked by theophylline and 2, 2′-pyridylisatogen, an ATP antagonist, but not blocked by either phentolamine or phenoxybenzamine, which inhibit alpha-adrenoreceptor responsiveness caused by norepinephrine or phenylephrine. Furthermore, dipyridamole, an adenosine uptake blocker, potentiated both ATP and adenosine activities. These findings indicate that adenosine and adenine nucleotides may exert their action at an extracellular site. From these results, it may be speculated that alpha adrenoreceptors and purinergic receptors do indeed exist on the smooth muscle of the vas deferens.  相似文献   

6.
Abstract— The maximum activities of 5'nucleotidase, adenosine kinase and adenosine deaminase have been measured in several areas of rat and human brain. There is no major difference between the activities of nucleotidase and kinase between rat and human brain, but the activity of deaminase is considerably higher in human brain. The activities of all these enzymes are similar in three areas of rat brain and nine areas of human brain, except for hind brain of the human, which has a low activity of adenosine deaminase. This variation may indicate the existence of different steady-state concentrations of adenosine in certain areas of the brain.
Subcellular fractionation of different areas of rat brain showed that, whereas adenosine kinase and deaminase activities were located mainly in the soluble fractions, 5'nucleotidase was present in all subcellular fractions (i.e. membrane, synaptosomal, mitochondrial and soluble). In particular, there was no major localisation within the synaptosomal fraction. Thus it is unlikely that the regulation of the activities of these enzymes is dependent upon changes within a specific compartment (e.g. synaptosomes) in the brain.  相似文献   

7.
Intact cells of Vibrio costicola hydrolyzed ATP, ADP, and AMP. The membrane-bound 5'-nucleotidase (C. Bengis-Garber and D. J. Kushner, J. Bacteriol. 146:24-32, 1981) was solely responsible for these activities, as shown by experiments with anti-5'-nucleotidase serum and with the ATP analog, adenosine 5'-(beta gamma-imido)-diphosphate. Fresh cell suspensions rapidly accumulated 8-14C-labeled adenine 5'-nucleotides and adenosine. The uptake of ATP, ADP, and AMP (but not the adenosine uptake) was inhibited by adenosine 5'-(beta gamma-imido)-diphosphate similarly to the inhibition of the 5'-nucleotidase. Furthermore, the uptake of nucleotides had Mg2+ requirements similar to those of the 5'-nucleotidase. The uptake of ATP was competitively inhibited by unlabeled adenosine and vice versa; inhibition of the adenosine uptake by ATP occurred only in the presence of Mg2+. These experiments indicated that nucleotides were dephosphorylated to adenosine before uptake. The hydrolysis of [alpha-32P]ATP as well as the uptake of free adenosine followed Michaelis-Menten kinetics. The kinetics of uptake of ATP, ADP, and AMP also each appeared to be a saturable carrier-mediated transport. The kinetic properties of the uptake of ATP were compared with those of the ATP hydrolysis and the uptake of adenosine. It was concluded that the adenosine moiety of ATP was taken up via a specific adenosine transport system after dephosphorylation by the 5'-nucleotidase.  相似文献   

8.
It is well known that the levels of adenosine in the brain increase dramatically during cerebral hypoxic-ischemic (HI) insults. Its levels are tightly regulated by physiological and pathophysiological changes that occur during the injury acute phase. The aim of the present study was to examine the effects of the neonatal HI event on cytosolic and ecto-enzymes of purinergic system––NTPDase, 5′-nucleotidase (5′-NT) and adenosine deaminase (ADA)––in cerebral cortex of rats immediately post insult. Furthermore, the Na+/K+-ATPase activity, adenosine kinase (ADK) expression and thiobarbituric acid reactive species (TBARS) levels were assessed. Immediately after the HI event the cytosolic NTPDase and 5′-NT activities were increased in the cerebral cortex. In synaptosomes there was an increase in the ecto-ADA activity while the Na+/K+ ATPase activity presented a decrease. The difference between ATP, ADP, AMP and adenosine degradation in synaptosomal and cytosolic fractions could indicate that NTPDase, 5′-NT and ADA were differently affected after insult. Interestingly, no alterations in the ADK expression were observed. Furthermore, the Na+/K+-ATPase activity was correlated negatively with the cytosolic NTPDase activity and TBARS content. The increased hydrolysis of nucleotides ATP, ADP and AMP in the cytosol could contribute to increased adenosine levels, which could be related to a possible innate neuroprotective mechanism aiming at potentiating the ambient levels of adenosine. Together, these results may help the understanding of the mechanism by which adenosine is produced following neonatal HI injury, therefore highlighting putative therapeutical targets to minimize ischemic injury and enhance recovery.  相似文献   

9.
In the present study, the transport of glutathione S-conjugate across rat heart sarcolemma has directly been proved to be an ATP-dependent process. Incubation of sarcolemma vesicles with S-(2,4-dinitrophenyl)glutathione (DNP-SG) in the presence of ATP resulted in a substantial uptake of DNP-SG into the vesicles; Mg2+ was required for ATP-stimulated transport. The rate of glutathione S-conjugate uptake was saturated with respect to ATP and DNP-SG concentrations with apparent Km values of 30 microM for ATP and 20 microM for DNP-SG. However, other nucleoside triphosphates, viz. GTP, UTP, CTP, and TTP, did not stimulate the transport effectively. The ATP-stimulated DNP-SG uptake was not affected by ouabain, EGTA, or by valinomycin-induced K+-diffusion potential, suggesting that Na+,K+-and Ca2+-ATPase activities as well as the membrane potential are not involved in the transport mechanism. ATP could not be replaced by ADP, AMP, or by ATP analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(beta,gamma-imino)triphosphate. From these observations, it is proposed that hydrolysis of gamma-phosphate of ATP is essential for the transport mechanism. The transport of DNP-SG by the sarcolemma vesicles, on the other hand, was inhibited by several different types of glutathione S-conjugates including 4-hydroxynonenal glutathione S-conjugate and leukotriene C4, and not by GSH. The transport system is suggested to have high affinities toward glutathione S-conjugates carrying a long aliphatic carbon chain (n greater than 6) and may play an important role in elimination of naturally occurring glutathione S-conjugates, such as leukotriene C4.  相似文献   

10.
CYCLIC adenosine 3′,5′-monophosphate (cyclic AMP) has been suggested to be the receptor site for neurotransmitters as well as a second messenger which mediates the action of a variety of hormones and neurohormones in animals and human tissues. Cyclic AMP is derived from adenosine triphosphate (ATP) by the activity of adenyl cyclase and it is metabolized into adenosine monophosphate (AMP) by phosphodiesterase. Beta receptor and adenyl cyclase may be the same in the peripheral tissues1. In vitro activation of adenyl cyclase activity by various putative neurotransmitters such as noradrenaline (NA), 5-hydroxytryptamine (5-HT), acetylcholine (ACh) and histamine in preparations from brain homogenates and slices is well established2. The in vivo effect, however, of these neurohormones on adenyl cyclase has not been studied.  相似文献   

11.
Adenosine plays an important role in neuromodulation and neuroprotection. Recent identification of transient changes in adenosine concentration suggests adenosine may have a rapid modulatory role; however, the extent of these changes throughout the brain is not well understood. In this report, transient changes in adenosine evoked by one second, 60 Hz electrical stimulation trains were compared in the caudate–putamen, nucleus accumbens, hippocampus, and cortex. The concentration of evoked adenosine varies between brain regions, but there is less variation in the duration of signaling. The highest concentration of adenosine was evoked in the dorsal caudate–putamen (0.34?±?0.08 μM), while the lowest concentration was in the secondary motor cortex (0.06?±?0.02 μM). In all brain regions, adenosine release was activity-dependent. In the nucleus accumbens, hippocampus, and prefrontal cortex, this release was partly due to extracellular ATP breakdown. However, in the caudate–putamen, release was not due to ATP metabolism but was ionotropic glutamate receptor-dependent. The results demonstrate that transient, activity-dependent adenosine can be evoked in many brain regions but that the mechanism of formation and release varies by region.  相似文献   

12.
1. Experiments using synaptosome beds suggested that ATP was released from presynaptic sites and degraded to adenosine in the synaptic cleft and that the resulting adenosine was taken up again into nerve endings where it was re-phosphorylated to ATP. 2. Adenosine derivatives in the synaptic cleft inhibited the postsynaptic potentials in olfactory cortex slices in vitro, presumably by the inhibition of Ca2+ influx into nerve endings which resulted in the reduction of transmitter release. 3. The adenosine derivatives also increased the level of cyclic AMP in the slices under the same conditions as above. 4. Although the nature of the "adenosine receptors" for both functions was remarkably similar, the increase of cyclic AMP did not mediate the inhibitory action, but the presynaptic increase of cyclic AMP induced by adenosine derivatives might mediate the facilitation observed in the olfactory cortex. 5. Possible physiological roles of extracellular adenosine derivatives in mammalian brain were classified, at different sites of action around the synapses, with different time courses and modes of action, directly or via the increase of intracellular cyclic AMP.  相似文献   

13.
14.
Triton X-100 extracts of rat brain microsomal fraction catalyse the formation of sulphogalactosyldiacylglycerol from galactosyldiacylglycerol and adenosine 3'-phosphate 5'-sulphatophosphate. Of the various subcellular fractions of brain assayed, the microsomal fraction contained most (79%) of the adenosine 3'-phosphate 5'-sulphatophosphate-galactosyldiacylglycerol sulphotransferase activity. The enzyme activity was stimulated by Triton X-100 and showed linearity with increasing time, concentrations of enzyme and added substrates. ATP and KF prolonged the linearity of the activity with time, but ATP had an overall inhibitory effect on the sulphotransferase. Both ATP and KF inhibit the degradation of adenosine 3'-phosphate 5'-sulphatophosphate, which probably causes the increased linearity of the sulphotransferase reaction with time. The enzyme preparation did not catalyse the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to either cholesterol or galabiosyldiacylglycerol (galactosylgalactosyldiacylglycerol). Significant differences between the formation of sulphogalactosyldiacylglycerol and cerebroside sulphate catalysed by the same enzyme preparation were noted. ATP and Mg(2+) strongly inhibit the formation of sulphogalactosyldiacylglycerol but equally strongly stimulate the synthesis of cerebroside sulphate. The apparent K(m) for galactosyldiacylglycerol is 200mum, and that for cerebroside is 45mum. Galactosyldiacylglycerol and cerebroside are mutually inhibitory toward the synthesis of sulphated derivatives of each. These data do not necessarily lead to the conclusion that two sulphotransferases are present, but they do indicate a possible means of controlling the synthesis of these two sulpholipids.  相似文献   

15.
Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.  相似文献   

16.
Alcohol abuse is an acute health problem throughout the world and alcohol consumption is linked to the occurrence of several pathological conditions. Here we tested the acute effects of ethanol on NTPDases (nucleoside triphosphate diphosphohydrolases) and 5'-nucleotidase in zebrafish (Danio rerio) brain membranes. The results have shown a decrease on ATP (36.3 and 18.4%) and ADP (30 and 20%) hydrolysis after 0.5 and 1% (v/v) ethanol exposure during 60 min, respectively. In contrast, no changes on 5'-nucleotidase activity were observed in zebrafish brain membranes. Ethanol in vitro did not alter ATP and ADP hydrolysis, but AMP hydrolysis was inhibited at 0.5, and 1% (23 and 28%, respectively). Acetaldehyde in vitro, in the range 0.5-1%, inhibited ATP (40-85%) and ADP (28-65%) hydrolysis, whereas AMP hydrolysis was reduced (52, 58 and 64%) at 0.25, 0.5 and 1%, respectively. Acetate in vitro did not alter these enzyme activities. Semi-quantitative expression analysis of NTPDase and 5'-nucleotidase were performed. Ethanol treatment reduced NTPDase1 and three isoforms of NTPDase2 mRNA levels. These findings demonstrate that acute ethanol intoxication may influence the enzyme pathway involved in the degradation of ATP to adenosine, which could affect the responses mediated by adenine nucleotides and nucleosides in zebrafish central nervous system.  相似文献   

17.
Extracellular ATP is a potent agonist of surfactant phosphatidylcholine (PC) exocytosis from type II pneumocytes in culture. We studied P1 and P2 receptor signal transduction in type II pneumocytes. The EC50 for ATP on PC exocytosis was 10(-6) M, whereas the EC50 for ADP, AMP, adenosine, and the nonmetabolizable ATP analogue alpha,beta-methylene ATP was 10(-4) M. The rank order of agonists for PC exocytosis was ATP greater than ADP greater than AMP greater than adenosine greater than alpha,beta-methylene ATP. The rank order of agonists for phosphatidylinositol (PI) hydrolysis was ATP greater than ADP, whereas AMP, adenosine, and alpha,beta-methylene ATP did not stimulate PI hydrolysis. ATP (10(-4) M) caused a 15-fold increase in adenosine 3',5'-cyclic monophosphate (cAMP) production, and the nonmetabolizable adenosine analogue 5'-N-ethylcarboxyamidoadenosine (10(-6) M) increased cAMP production threefold. The effects of both these agonists on cAMP production were completely inhibited by the adenosine antagonist 8-phenyltheophylline (10(-5) M). The effects of ATP (10(-4) M) on PC exocytosis were inhibited 38% by 10(-5) M 8-phenyltheophylline. Thus, ATP regulates PC exocytosis by activating P2 receptors, which stimulate PI hydrolysis to inositol phosphate, as well as by activating P1 receptors, which stimulate cAMP production. Interactions between the P1 and P2 pathways may explain the high potency of extracellular ATP as an agonist of PC exocytosis.  相似文献   

18.
The main objective of these studies was to determine whether adenosine inhibits choline kinase in rat striata, leading to a decreased incorporation of choline into phosphorylcholine, a mechanism that may mediate seizure-induced increases in the levels of free choline in brain. Incubation of particulate and soluble fractions of striatal synaptosomes with adenosine or its metabolically stable analogues significantly inhibited enzyme activity. The inhibition was noncompetitive versus choline and competitive versus MgATP. Inhibitor constants for adenosine, 2-chloroadenosine, and 2',5'-dideoxyadenosine at the MgATP site were 94, 49, and 207 microM, respectively; these values were less than the Michaelis constant for MgATP (340 microM). To determine whether adenosine altered the phosphorylation of choline in an intact preparation, synaptosomes were incubated with [3H]choline in the presence or absence of adenosine or its analogues and the amount of [3H]-phosphorylcholine formed from the [3H]choline taken up was measured. All compounds tested significantly reduced the synthesis of [3H]phosphorylcholine. Results suggest that following seizures or hypoxia, when levels of adenosine increase and the concentration of ATP decreases, inhibition of choline phosphorylation may be manifest, resulting in increased levels of free choline in brain.  相似文献   

19.
Glyceraldehyde-3-phosphate dehydrogenase from different origins (brain, muscle, erythrocytes) binds to microtubules polymerized from pure brain tubulin and causes bundle formation in vitro. ATP is shown to dissociate these bundles into individual microtubules, while the dehydrogenase is not displaced from the polymers by this nucleotide. ATP can be replaced by adenosine 5'-(beta, gamma-imido]triphosphate, a nonhydrolyzable analog of ATP. These data are interpreted in terms of dissociation of the glyceraldehyde-3-phosphate dehydrogenase tetramer into dimers by ATP. The enzyme is also efficiently purified by a tubulin-Sepharose affinity chromatography.  相似文献   

20.
Sonicated cells ofEscherichia coli contain an enzyme system degrading 5′ adenosine monophosphate (5′ AMP) to hypoxanthine. This enzyme system is located in the fraction sedimenting at 20,000 xg. It has a pH optimum at 8.0. In the fraction sedimenting at 20,000 xg the enzyme activity was inhibited by adenosine triphosphate (ATP). Adenosine and adenine are deaminated by this enzyme preparation to inosine and to hypoxanthine, these activities not being inhibited by ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号