首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conjugated linoleic acid (CLA) has been shown to exert several biological activities in different organs, in particular organs such as adipose and mammary tissue where CLA accumulates preferentially because of its high incorporation into neutral lipids. However, despite numerous studies carried out in different experimental models, both in vivo and in vitro, very little is known about the accumulation and metabolism of CLA in the brain. In this communication we present data showing that the two CLA isomers c9,t11 and t10,c12 are actively incorporated and metabolised in rat brain, and in cultures of astrocytes in vitro with patterns remarkably similar to those previously reported to occur in other tissues and cells. However, beta oxidation of CLA was found to be more efficient in brain than in other tissues, with t10,c12 a better substrate than the c9,t11 isomer. CLA incorporation and metabolism have been linked to antiinflammatory and antiproliferative activities in experimental models. Therefore, CLA activity in brain could have a positive impact on neurological disorders, such as Alzheimer's disease, Parkinson's disease and adrenoleukodystrophy, where an observed increase in inflammatory responses seems to contribute heavily to the pathogenesis.  相似文献   

2.
Previous data demonstrated that conjugated linoleic acid (CLA) reduced eicosanoid release from select organs. We hypothesized that one active CLA isomer was responsible for the reduced prostaglandin release and that the mechanism was through the inhibition of inducible cyclooxygenase-2 (COX-2). Here, we examined the effects of 10t,12c-CLA and 9c,11t-CLA on COX-2 protein/mRNA expression, prostaglandin E(2) (PGE(2)) production, and the mechanism by which CLA affects COX-2 expression and prostaglandin release. The COX-2 protein expression level was inhibited 80% by 10t, 12c-CLA and 26% by 9c,11t-CLA at 100 microM in vitro. PGE(2) production was decreased from 5.39 to 1.12 ng/2 x 10(6) cells by 10t,12c-CLA and from 5.7 to 4.5 ng/2 x 10(6) cells by 9c,11t-CLA at 100 microM. Mice fed 10t,12c-CLA but not 9c,11t-CLA were found to have a 34% decrease in COX-2 protein and a 43% reduction of PGE(2) release in the lung. 10t,12c-CLA reduced COX-2 mRNA expression level by 30% at 100 microM in vitro and by 30% in mouse lung in vivo. Reduced COX-2 mRNA was attributable to an inhibition of the nuclear factor kappaB (NF-kappaB) pathway by 10t,12c-CLA. These data suggested that the inhibition of NF-kappaB was one of the mechanisms for the reduced COX-2 expression and PGE(2) release by 10t,12c-CLA.  相似文献   

3.
Rat hepatic stellate cells (HSC-T6) were incubated for 24 h with 10-180 microM of t10c12 (98%), c9t11 (96%) and a mixed form (c9,t11:t10,c12; 41%:44%) of conjugated linoleic acid (CLA). The MTS dye reduction was measured to verify cell viability in a dose-dependent manner. Among the three CLAs, c9,t11-CLA exhibited the most intense cytotoxic effect on HSCs, the survival rate of which was reduced to 60% under 80 microM of treatment, while cell survival was slightly affected by the mixed form. Three CLA-induced cell deaths were determined by measuring DNA fragmentation using 4',6-diamidino-2-phenylindole staining. The degrees of DNA fragmentation were the most severe in HSC treated with 80 microM of c9,t11-CLA. The mitogen-activated protein kinase/extracellular signal-regulated kinase-kinase and mitogen-activated or extracellular signal-regulated protein kinase (MEK) 1 and 2 were not activated in the t10,c12-CLA treatment. This suggests that the MEK-dependent apoptosis signal is crucial in HSC, which is induced by c9,t11 and mixed CLA. In order to evaluate the protective effect of CLA on carbon tetrachloride (CCl4)-induced hepatic fibrosis in vivo, animals were treated with 10% CCl4 to induce hepatic fibrosis during all experimental periods. Rats were divided into two treatment groups: (1) control diet with tap water ad libitum (n=15) and (2) 1% CLA diet with tap water ad libitum (n=15). In the CLA-supplemented rat livers, alpha-smooth muscle actin-positive cells were significantly reduced around the portal vein. In addition, collagen fibers were not detected in the CLA-treated group. These results suggest that 9c,11t-CLA influences cytotoxic effect on HSC in an MEK-dependent manner and preserving liver from fibrosis.  相似文献   

4.
Conjugated linoleic acid (CLA) isomers have unique effects on tissue lipids. Here we investigated the influence of individual CLA isomers on the lipid weight and fatty acid composition of lipid metabolizing (i.e. liver and retroperitoneal adipose) and lipid sensitive (i.e. spleen and heart) tissues. Female mice (8 week old; n=6/group) were fed either a control or one of the two CLA isomer supplemented (0.5%) diets for 8 weeks. The cis-9, trans-11-CLA diet reduced the 18:1n-9 wt% by 20-50% in liver, adipose tissue, and spleen, reduced the spleen n-3 polyunsaturated fatty acid (PUFA) by 90%, and increased the n-6 PUFA wt% by 20-50% in all tissues except heart. The trans-10, cis-12-CLA reduced both the n-6 and n-3 PUFA wt% in liver (>50%), reduced the heart n-3 PUFA wt% by 25%, and increased the wt% of spleen n-3 PUFA by 700%. The functional consequences of such changes in tissue fatty acid composition need to be investigated.  相似文献   

5.
An excessive lipid content in embryo cells is a consequence of embryo culture in the presence of serum which is suggested to be responsible for their high susceptibility to cryopreservation. The objective of the present study was to examine the effects of supplementing serum-containing culture media with trans-10 cis-12 conjugated linoleic acid (10t,12c CLA) on embryo lipid accumulation and its subsequent cryopreservation. Abattoir-derived oocytes were matured and fertilized in vitro (IVF=day 0). On day 1, presumptive zygotes (n=3390) were randomly placed in: (I) (MS), granulosa cell monolayer cultured with M199 and 10% serum; (II) (SCLA), granulosa cell monolayer cultured with M199, 10% serum and 100 microM 10t,12c CLA and (III) (SOF), modified synthetic oviduct fluid, where embryo culture proceeded for 8 days. Cleavage rates or D7/D8 embryo quality did not vary among treatments. D7/D8 embryo production rate was significantly (P<0.001) lower in SOF (17.9+/-1.6%) than in groups MS (29.8+/-2.5%) and SCLA (27.8+/-2.0%). After cytoplasmic lipid droplets observation under Nomarski microscopy, classified embryos were the leanest when cultured in SOF, intermediate in SCLA and the fattest in MS (P<0.02). Post-thawing intact blastocyst rates where significantly higher in the SCLA group (84.7+/-4.1%) than in SOCS (50.3+/-4.8%, P=0.0007) or SOF (65.3+/-6.9%, P=0.03) groups. Post-thawing re-expanding rates were significantly lower when embryos were cultured in MS (34.7+/-3.7%) than in SCLA (63.7+/-5.3%, P=0.0006) or SOF (49.0+/-4.6%, P=0.04). Moreover, re-expanding rates were lower (P=0.05) in SOF than in SCLA cultured embryos. These results clearly show that addition of CLA to serum-containing media reduced lipid accumulation during in vitro culture and significantly improved cryopreservation survival.  相似文献   

6.
Previous work demonstrated that feeding commercial preparations of conjugated linoleic acid (CLA) [a 50:50 mixture of c9,t11 and t10,c12 CLA (cCLA)] partially overcame lipopolysaccharide (LPS)-induced growth depression. The objective of this study was to determine which CLA isomer was responsible for the reduction of LPS-induced growth depression. Dietary cCLA supplementation for 3 weeks protected mice from LPS-induced weight loss 24 h after injection compared to mice fed isocaloric and isonitrogenous control diets supplemented with either corn oil (CO) or a mixture of CO and olive oil. Dietary c9,t11 or t10,c12 CLA led to body weight loss intermediate to controls and cCLA. After LPS-induced weight loss, the t10,c12 CLA fed mice regained weight faster than the control or c9,t11 CLA fed mice. Dietary t10,c12 CLA and cCLA reduced plasma tumor necrosis factor 2 h after LPS stimulation. While neither c9,t11 nor t10,c12 CLA isomers alone protected from immune-induced weight loss, the t10,c12 CLA isomer induced compensatory gain.  相似文献   

7.
This study investigated the incorporation of cis-9,trans-11 conjugated linoleic acid (c9,t11 CLA) and trans-10,cis-12-CLA (t10,c12 CLA) into plasma and peripheral blood mononuclear cell (PBMC) lipids when consumed as supplements highly enriched in these isomers. Healthy men (n = 49, age 31 +/- 8 years) consumed one, two, and four capsules containing approximately 600 mg of either c9,t11 CLA or t10,c12 CLA per capsule for sequential 8 week periods followed by a 6 week washout before consuming the alternative isomer. Both isomers were incorporated in a dose-dependent manner into plasma phosphatidylcholine (PC) (c9,t11 CLA r = 0.779, t10,c12 CLA r = 0.738; P < 0.0001) and cholesteryl ester (CE) (c9,t11 CLA r = 0.706, t10,c12 CLA r = 0.788; P < 0.0001). Only t10,c12 CLA was enriched in plasma nonesterified fatty acids. Both c9,t11 CLA and t10,c12 CLA were incorporated linearly into PBMC total lipids (r = 0.285 and r = 0.273, respectively; P < 0.0005). The highest concentrations of c9,t11 CLA and t10,c12 CLA in PBMC lipids were 3- to 4-fold lower than those in plasma PC and CE. These data suggest that the level of intake is a major determinant of plasma and PBMC CLA content, although PBMCs appear to incorporate both CLA isomers less readily.  相似文献   

8.
Oxidative stress, hepatic steatosis, and mitochondrial dysfunction are key pathophysiological features of nonalcoholic fatty liver disease. A conjugated linoleic acid (CLA) mixture of cis9,trans11 (9,11-CLA) and trans10,cis12 (10,12-CLA) isomers enhanced the antioxidant/detoxifying mechanism via the activation of nuclear factor E2-related factor-2 (Nrf2) and improved mitochondrial function, but less is known about the actions of specific isomers. The differential ability of individual CLA isomers to modulate these pathways was explored in Wistar rats fed for 4 weeks with a lard-based high-fat diet (L) or with control diet (CD), and, within each dietary treatment, two subgroups were daily administered with 9,11-CLA or 10,12-CLA (30 mg/day). The 9,11-CLA, but not 10,12-CLA, supplementation to CD rats improves the GSH/GSSG ratio in the liver, mitochondrial functions, and Nrf2 activity. Histological examination reveals a reduction of steatosis in L-fed rats supplemented with both CLA isomers, but 9,11-CLA downregulated plasma concentrations of proinflammatory markers, mitochondrial dysfunction, and oxidative stress markers in liver more efficiently than in 10,12-CLA treatment. The present study demonstrates the higher protective effect of 9,11-CLA against diet-induced pro-oxidant and proinflammatory signs and suggests that these effects are determined, at least in part, by its ability to activate the Nrf2 pathway and to improve the mitochondrial functioning and biogenesis.  相似文献   

9.
Thermally induced isomerisation leading to the formation of conjugated linoleic acids (CLAs) has been observed for the first time during the thermal treatment of 9t12t fatty acid triacylglycerol, and methyl ester. Fifteen microlitre portions of the triacylglycerol sample containing 9t12t fatty acid (trilinoelaidin) were placed in micro glass ampoules and sealed under nitrogen, then subjected to thermal treatment at 250 °C. The glass ampoules were removed at regular time intervals, cut open, and the contents were analysed by infrared spectroscopy using a single reflectance attenuated total internal reflectance crystal accessory. The samples were then subjected to derivatisation into their methyl esters. The methyl esters of the isomerised fatty acids were analysed by gas chromatography. The same procedure was repeated with methyl ester samples containing 9t12t fatty acid (methyl linoelaidate). Each sample was subjected to infrared measurements and gas chromatographic analysis after appropriate dilution in heptane.The results show that the thermally induced isomerisation of 9t12t fatty acids from both triacylglycerol molecules and methyl esters give identical CLA profiles as those found for the thermally induced isomerisation of 9c12c fatty acids. The infrared spectrometry provides additional evidence confirming the formation of CLA acids during thermal treatment. A mechanism for the formation of the CLAs from 9t12t fatty acid molecules is also formulated for the first time. This mechanism complements the pathways of formation of CLAs from 9c12c fatty acids during thermal treatment.  相似文献   

10.
A quantitative GC method for conjugated linoleic acid (CLA) isomers of physiological significance (cis-9, trans-11 CLA and trans-10, cis-12 CLA) as non-esterified fatty acids (NEFA) or triacylglycerols (TAG) was developed. Furthermore, the effect of the internal standard addition point (sample or fat extract) was studied. Response linearity, recovery and precision assays, detection and quantification limits were determined. Linearity was demonstrated over a range from 0.1 to 10 microg/mL. When CLA isomers were present as NEFA, the recovery significantly decreased (P< or =0.05) from 76% to 27.1% (cis-9, trans-11 CLA) and 28.5% (trans-10, cis-12 CLA) when the standards were added to the fat extract or to the initial tissue, respectively. As an application, liver samples from hamsters fed a diet supplemented with both CLA isomers were analyzed. The CLA isomers in liver samples were detected with reasonable reproducibility.  相似文献   

11.
The elongated form of conjugated linoleic acid (CLA), conjugated eicosadienoic acid (CEA, conj. 20:2delta(c11,t13/t12,c14)), was generated from CLA by liver microsomal fractions. Subsequent testing showed that dietary CEA significantly reduced body fat, and increased lean mass similar to CLA when compared to controls. CEA also decreased lipoprotein lipase activity and triacylglyceride, and increased glycerol release in 3T3-L1 adipocytes, correlated with the trans-12,cis-14 isomer, but CEA required a longer incubation period than cells treated with CLA. Based on the fact that CEA fed animals had CLA in tissue, we suggest that the effect of CEA is due to the CLA converted from CEA in the system. The delta-6 desaturated and elongated form of trans-10,cis-12 CLA (conjugated eicosatrienoic acid, CETA, conj. 20:3delta(c8,t12,c14)) inhibited LPL activity and increased glycerol release but was less active than trans-10,cis-12 CLA or CEA. The 21-carbon conjugated fatty acid, conjugated heneicosadienoic acid (CHDA, conj. 21:2delta(c12,t14/c13,t15)), was not active on LPL inhibition, triacylglyceride, or glycerol release in 3T3-L1 adipocytes. We also provide evidence that CLA was metabolized to conjugated dodecadienoic acid (conj. 12:2delta(c3,t5/t4,c6)). In addition, there were indications of the presence of conjugated tetradecadienoic acid (conj. 14:2delta(c5,t7/t6,c8)), suggesting that CLA can be metabolized through fatty acid beta-oxidation. This is the first work to report the presence of conjugated 12 and 14 carbon fatty acids, originated from CLA, and the biological activities of CEA, CETA and CHDA.  相似文献   

12.
13.
The effect of maturation and of two lipid modulators supplementation along in vitro maturation (IVM) on fatty acid (FA) and dimethylacetal (DMA) composition of porcine cumulus oocyte complexes (COC) were studied. Abattoir-derived immature COC were analyzed for FA and DMA or submitted to IVM as follows: control group; t10,c12 CLA group, t10,c12 CLA supplementation for 44 h; Forskolin group, forskolin supplementation during the initial 2 h; t10,c12 CLA?+?forskolin group, t10,c12 CLA for 44 h and forskolin for just 2h. Each experimental group had five replicates. FA analysis of oocytes, cumulus cells (CC), follicular fluid, and culture media were performed by gas–liquid chromatography. Oocytes and their CC had different FA composition. Oocytes were richer in saturated FA (SFA) preferentially maintaining their FA profile during maturation. Mature CC had the highest polyunsaturated FA (PUFA) content. Five individual and total SFA, and monounsaturated FA (MUFA), notably oleic acid (c9-18:1), percentages were lower (P?≤?0.023) in mature than in immature CC. t10,c12 CLA was accumulated by COC from t10,c12 CLA and t10,c12 CLA?+?forskolin groups, mostly in CC where MUFA and an eicosatrienoic isomer decreased (P?≤?0.043). Nevertheless, PUFA or FA and DMA total content were not affected. Arachidonic acid was reduced in t10,c12 CLA?+?forskolin CC and hexadecanal-DMA-16:0 in t10,c12 CLA CC. Forskolin alone increased (P?≤?0.043) c9-18:1 in oocytes. In conclusion, maturation process clearly changed porcine COC FA and DMA profiles, mostly of CC, also more susceptible to modifications induced by t10,c12 CLA. This possibility of manipulating COC lipid composition during IVM could be used to improve oocyte quality/cryopreservation efficiency.  相似文献   

14.
The objective of the present study was to examine the effects of two different isomers of conjugated linoleic acid (CLA), c9,t11 CLA and t10,c12 CLA, compared with linoleic acid (LA) used as control, on body composition, lipoprotein profile, hepatic lipids and fecal fat content in hamsters. Animals were assigned to the three diet groups (n=15) during 28 days. The diet was composed of 2% of the experimental fat, and throughout the experimental protocol, the hamsters experienced similar food intake. No significant differences were noted in body weight gain among the three diet groups. However, the t10,c12 CLA-fed animals showed higher low-density lipoprotein cholesterol (LDL-C) concentrations (0.9+/-0.1 mmol/L) than those who ingested either LA (0.6+/-0.1 mmol/L) or c9,t11 CLA isomer (0.7+/-0.1 mmol/L), although the t10,c12 CLA consumption decreased hepatic cholesterol and triglycerides and increased fecal fat content compared with the other two groups. Under the present experimental conditions, the dietary c9,t11 CLA isomer showed no positive beneficial effect on plasma lipids. Furthermore, the t10,c12 CLA isomer induced undesirable higher LDL-C, although it reduced hepatic lipids and fat digestibility in hamsters.  相似文献   

15.
We have previously shown that the 9c,11t-conjugated linoleic acid (CLA) concentration was always significantly higher than the 10t,12c-CLA concentration following the administration of these compounds to mice and rats, and considered that structural differences between the conjugated double bonds in these isomers affected absorption in the small intestine. This study investigates the absorption of CLA in the rat intestine by a lipid absorption assay of lymph from the thoracic duct. In Study 1, we used safflower oil and a triacylglycerol form of CLA (CLA-TG), while in Study 2, we used 9c,11t-CLA and 10t,12c-CLA. The cumulative recovery of CLA was lower than that of linoleic acid until two hours after sample administration. There was no difference in the extent of lymphatic recovery of 9c,11t-CLA and 10t,12c-CLA after the administration of CLA-TG, 9c,11t-CLA, and 10t,12c-CLA to the rats, suggesting that geometrical and positional isomerism of the conjugated double bonds did not influence the absorption.  相似文献   

16.
Conjugated linoleic acid (CLA) has been shown to reduce body fat mass in various experimental animals. It is valuable to identify its influence on enzymes involved in energy expenditure, apoptosis, fatty acid oxidation and lipolysis. We investigated isomer-specific effects of high dose, long treatment of CLA (75.4 μmol/L, 8 days) on protein and gene expression of these enzymes in cultured 3T3-L1 cells. Proteomics identified significant up- or down-regulation of 52 proteins by either CLA isomer. Protein and gene expression of uncoupling protein (UCP) 1, UCP3, perilipin and peroxisome proliferator-activated receptor (PPAR) α increased whereas UCP2 reduced for both CLA isomers. And eight-day treatment of trans-10,cis-12 CLA, but not cis-9,trans-11 CLA, significantly up-regulated protein and mRNA levels of PKA (P<.05), CPT-1 and TNF-α (P<.01). Compared to protein expression, both isomers did not significantly influence the mRNA expression of HSL, ATGL, ACO and leptin. In conclusion, high-dose, long treatment of cis-9,trans-11 CLA did not promote apoptosis, fatty acid oxidation and lipolysis in adipocytes, but may induce an increase in energy expenditure. trans-10,cis-12 CLA exhibited greater influence on lipid metabolism, stimulated adipocyte energy expenditure, apoptosis and fatty acid oxidation, but its effect on lipolysis was not obvious.  相似文献   

17.
Caloric restriction (CR) is one of the most promising strategies for weight loss but is associated with loss of lean mass, whereas compounds such as trans-10,cis-12 conjugated linoleic acid (t10-c12 CLA) have been promoted as antiobesity agents. To compare the mechanisms of weight reduction by CR and t10-c12 CLA, body composition, glucose control, and characteristics of adipose tissue with respect to cell turnover (stem cells and preadipocytes, apoptosis and autophagy) and Tbx-1 localization were examined in obese db/db mice and lean C57BL/6J mice undergoing CR or fed CLA isomers (0.4% w/w c9-t11 or t10-c12) for 4 weeks. Our findings show that the t10-c12 CLA reduced whole-body fat mass by decreasing all fat depots (visceral, inguinal, brown/interscapular), while CR lowered both whole-body fat and lean mass in obese mice. t10-c12 CLA elevated blood glucose in both obese and lean mice, while glycemia was not altered by CR. The adipocyte stem cell population remained unchanged; however, t10-c12 CLA reduced and CR elevated the proportion of immature adipocytes in obese mice, suggesting differential effects on adipocyte maturation. t10-c12 CLA reduced apoptosis (activated caspase-3) in both obese and lean mice but did not alter autophagy (LC3II/LC3I). Nuclear Tbx-1, a marker of metabolically active beige adipocytes, was greater in the adipose of t10-c12 CLA-fed animals. Thus, weight loss achieved via t10-c12 CLA primarily involves fat loss and more cells with Tbx-1 localized to the nucleus, while CR operates through a mechanism that reduces both lean and fat mass and blocks adipocyte differentiation.  相似文献   

18.
19.
Conjugated linoleic acids (CLA) are a class of positional, geometric, conjugated dienoic isomers of linoleic acid (LA). Dietary CLA supplementation results in a dramatic decrease in body fat mass in mice, but also causes considerable liver steatosis. However, little is known of the molecular mechanisms leading to hepatomegaly. Although c9,t11- and t10,c12-CLA isomers are found in similar proportions in commercial preparations, the respective roles of these two molecules in liver enlargement has not been studied. We show here that mice fed a diet enriched in t10,c12-CLA (0.4% w/w) for 4 weeks developed lipoatrophy, hyperinsulinemia, and fatty liver, whereas diets enriched in c9,t11-CLA and LA had no significant effect. In the liver, dietary t10,c12-CLA triggered the ectopic production of peroxisome proliferator-activated receptor gamma (PPARgamma), adipocyte lipid-binding protein and fatty acid transporter mRNAs and induced expression of the sterol responsive element-binding protein-1a and fatty acid synthase genes. In vitro transactivation assays demonstrated that t10,c12- and c9,t11-CLA were equally efficient at activating PPARalpha, beta/delta, and gamma and inhibiting liver-X-receptor. Thus, the specific effect of t10,c12-CLA is unlikely to result from direct interaction with these nuclear receptors. Instead, t10,c12-CLA-induced hyperinsulinemia may trigger liver steatosis, by inducing both fatty acid uptake and lipogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号