首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molybdenum cofactor was extracted from membranes of Proteus mirabilis by three methods: acidification, heat treatment and heat treatment in the presence of sodium-dodecylsulphate (SDS). Extracts prepared by the latter method contained the highest concentration of molybdenum cofactor. In these extracts molybdenum cofactor was present in a low molecular weight form. It could not penetrate an YM-2 membrane during ultrafiltration suggesting a molecular weight above 1000. During aerobic incubation of cofactor extracts from membranes at least four fluorescent species were formed as observed in a reversed-phase high performance liquid chromatography (HPLC) system. The species in the first peak was inhomogeneous while the species in the others seem to be homogenous. In water, all fluorescent products had an excitation maximum at 380 nm and an emission maximum at 455 nm. Their absorption spectra showed maxima at around 270 nm and 400 nm. Fluorescent compounds present in the first peak could penetrate an YM-2 membrane during ultrafiltration, whereas the compounds in the other peaks hardly did. Using xanthine oxidase from milk as source of molybdenum cofactor apparently identical cofactor species were found. Cytoplasmic nor membrane extracts of the chlorate resistant mutant chl S 556 of P. mirabilis could complement nitrate reductase of Neurospora crassa nit-1 in the presence of 20 mM molybdate. However, fluorescent species with identical properties as found for the wild-type were formed during aerobic incubation of extracts from membranes of this mutant.Non-common Abbreviations HPLC high performance liquid chromatography - I.D. internal diameter - SDS sodium dodecyl sulphate  相似文献   

2.
Summary The characterization of mutants that are resistant to the herbicide chlorate has greatly increased our understanding of the structure and function of the genes required for the assimilation of nitrate. Hundreds of chlorate-resistant mutants have been identified in plants, and almost all have been found to be defective in nitrate reduction due to mutations in either nitrate reductase (NR) structural genes or genes required for the synthesis of the NR cofactor molybdenum-pterin (MoCo). The chlorate-resistant mutant ofArabidopsis thaliana, ch12, is also impaired in nitrate reduction, but the defect responsible for this phenotype has yet to be explained.chl2 plants have low levels of NR activity, yet the map position of thechl2 mutation is clearly distinct from that of the two NR structural genes that have been identified inArabidopsis. In addition,chl2 plants are not thought to be defective in MoCo, as they have near wild-type levels of xanthine dehydrogenase activity, which has been used as a measure of MoCo in other organisms. These results suggest thatchl2 may be a NR regulatory mutant. We have examinedchl2 plants and have found that they have as much NR (NIA2) mRNA as wild type a variable but often reduced level of NR protein, and one-eighth the NR activity of wild-type plants. It is difficult to explain these results by a simple regulatory model; therefore, we reexamined the MoCo levels inchl2 plants using a sensitive, specific assay for MoCo: complementation ofNeurospora MoCo mutant extracts. We found thatchl2 has low levels of MoCo — about one-eighth the wild-type level and less than the level in anotherArabidopsis MoCo mutantchl6 (B73). To confirm this result we developed a new diagnostic assay for MoCo mutants, growth inhibition by tungstate. Bothchl2 andchl6 are sensitive to tungstate at concentrations that have no effect on wildtype plants. The tungstate sensitivity as well as the chlorate resistance, low NR activity and low MoCo levels all cosegregate, indicating that all are due to a single mutation that maps to thechl2 locus, 10 centimorgans fromerecta on chromosome 2. We also report on the isolation of a new chlorate-resistant mutant ofArabidopsis, ch17, which is a MoCo mutant with the same phenotypes aschl2 andchl6.  相似文献   

3.
Nitrate reductase A has been solubilized from purified cytoplasmic membranes by extraction with terl-amyl alcohol. The resulting aqueous solution contained monomeric reductase which polymerized slowly to dimers and tetramers with sedimentation coefficients of respectively 10.5, 16 and 23 Svedbergunits. The polymerization could be stopped to some extent by addition of a small amount of Triton X-100. These distinct entities of nitrate reductase A were separable on electro-focusing, DEAE-column chromatography and polyacrylamide gel electrophoresis, and have been proved to consist of similar subunits with molecular weights of 104000, 63000, and 56000 daltons. The molecular weights of monomeric nitrate reductase A was found to be about 240000 daltons.Chlorate reductase C has been solubilized by a similar procedure, resulting in only monomeric enzyme. Chlorate reductase C exhibited a sedimentation coefficient of 7.7 Svedbergunits, an isoelectric point of pH=4.55 and a molecular weight of approx. 180000 daltons. It was found to consist of three subunits with molecular weights of 75000, 63000 and 56000 daltons. The latter two subunits are most probably common in nitrate reductase A and chlorate reductase C.  相似文献   

4.
Salikhova  Z. Z.  Sokolova  R. B.  Yusupova  D. V. 《Microbiology》2000,69(6):659-662
The culture liquid and periplasm of Proteus mirabilis contained nuclease, an enzyme with DNase and RNase activities. The nuclease was most actively synthesized in the early exponential and stationary growth phases. Nuclease synthesis was regulated by nucleic acids (induction by substrate) and inorganic phosphate (end-product inhibition). The synthesis and secretion of nuclease by P. mirabilis was induced by mitomycin C, an inducer of the SOS functions of cells. This suggests the involvement of SOS-response proteins in the regulation of nuclease synthesis.  相似文献   

5.
Cells of Proteus mirabilis, previously grown in nutrient broth (NB), exhibited an increase in urease activity during subsequent incubation in mineral medium even when protein biosynthesis was inhibited. During growth in NB, degradation of amino acids obviously led to the formation of nickel-complexing metabolites, and nickel ions were therefore inavailable for maximal expression of enzymatically active urease; this inhibition of urcase biosynthesis was overcome by the addition of nickel to the growth medium, and also by added glucose. Experiments concerning the incorporation of radioactive nickel into urease finally indicated that the observed increase in urease activity was caused by posttranslational insertion of nickel into preformed apourease.  相似文献   

6.
Isolated membranes of the cell wall-less stable protoplast L-form of Proteus mirabilis were characterized by density gradient centrifugation and by assay for their major chemical constituents, proteins, phospholipids and lipopolysaccharide, and for some specific marker enzymes of the cytoplasmic membrane. In most of the analyzed properties the L-form protoplast membrane resembled the bacterial cytoplasmic membrane, with some notable modifications. considerable amounts of lipopolysaccharide, normally an exclusive constituent of the outer membrane, were found. Furthermore, the L-form membranes contained the functions of the reduced nicotinamide adenine dinucleotide oxidase system, of d-lactate dehydrogenase (EC 1.1.1.28) and of succinate dehydrogenase (EC 1.3.99.1) at specific activities comparable to, or in some cases considerably higher than, those present in cytoplasmic membranes of the bacterial form. Of two peptidoglycan DD-carboxypetidase/transpeptidases (EC 3.4.17.8 and EC 2.3.2.10), which are normally present in the cytoplasmic membrane of the bacterial form of P. mirabilis, the membrane of the protoplast L-form contained only one. Electron microscopy of thin sectioned L-form protoplasts showed extensive heterogeneity of membraneous structures. In addition to the single membraneous integument, internal membrane-bounded vesicles and multiple stacks of membranes were present, as the result of unbalanced growth and membrane synthesis in the L-form state.  相似文献   

7.
The functional localization of the cytochromes b found in anaerobically grown Proteus mirabilis was investigated. From light absorption spectra, scanned during uninhibited and HQNO-inhibited electron transport to various electron acceptors, it was concluded that all cytochromes b function between two HQNO inhibition sites, or more probably in a Q- or b-cycle.Abbreviation HQNO= 2-n-heptyl-4-hydroxy-quinoline-N-oxide  相似文献   

8.
There were significant differences in the contents of molybdenum cofactor (Mo-co), both in a low-molecular-mass form (free Mo-co) and in a protein-bound form, in seeds of sevenVicia faba genotypes. Low-molecular-mass Mo-co species present in the extracts were detected by their ability to reactivate, through a dialysis membrane, aponitrate reductase from theNeurospora crassa nit-1 mutant. In extracts of all genotypes tested, the amount of Mo-co capable of directly reactivating nitrate reductase of theN. crassa nit-1 mutant was always much higher than that of low-molecular-mass Moco. These data cannot be explained by considering, as traditionally, that Mo-co detected directly, i.e. without any previous treatment for its release from Mo-coproteins, corresponds to free low-molecular mass Mo-co. A protein which bound Mo-co was purified to electrophoretic homogeneity. This protein consisted of a single 70-kDa polypeptide chain and carried a Mo-co that could be efficiently released when in contact with aponitrate reductase.Abbreviations CP carrier protein - Mo-co molybdenum cofactor - NR nitrate reductase - XO xanthine oxidase  相似文献   

9.
A murein-associated outer membrane protein from Proteus mirabilis has been isolated. Since the protein carries ester- as well as amide-linked fatty acids it can be classified as a second outer membrane lipoprotein. An apparent molecular weight of 15,000 for this protein was determined from amino acid analysis and sodium dodecylsulfate/polyacrylamide gel electrophoresis. The amino acid composition, however, does not show similarities with the amino acid composition of the lipoprotein covalently linked to murein, which has a molecular weight of 7,300 as described previously in Proteus mirabilis.Abbreviation SDS sodium dodecylsulfate  相似文献   

10.
High rates of hydrogen photoproduction are obtained when glutaraldehyde-fixed Photosystem I-enriched vesicles (Photosystem II-depleted) are added to hydrogenase-containing cells of Proteus mirabilis in the presence of the mediator methylviologen and a suitable electron donating system. This donor system includes ascorbate, dithioerythritol (DTE) and the mediator tetramethylphenylene-diamine (TMPD) and reduces the photosynthetic electron transfer chain at the level of plastocyanin. Both DTE and ascorbate are required for hydrogen photoproduction, DTE being the ultimate electron donor and ascorbate only having a catalytic function. Whereas the aerobic photoreduction of methylviologen is similar in the presence of DTE, ascorbate or both, under anaerobic conditions only combination of both compounds results in a high and stable amount of reduced methylviologen that can be utilized by the hydrogenase. It is concluded that oxidation reactions of reduced methylviologen, competing with the hydrogenase, rather than methylviologen photoreduction, limit hydrogen photoproduction in the presence of either DTE or ascorbate. These oxidation reactions are suggested to involve back reactions to the oxidized form(s) of ascorbate and DTE but backflow to the photosynthetic electron transfer chain (i.e. cyclic electron transfer) can not be excluded.Abbreviations Tes N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid - DTE 1,4-dithioerythritol - TMPD, N,N,N N-tetramethyl-p-phenylenediamine - DCMU 3-(3, 4-dichlorophenyl)-1, 1,-dimethylureum - EDAC 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide - DNP-INT 2-iodo-6-isopropyl-3-methyl-2, 4, 4-trinitrodiphenyl ether - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone - PS photosystem - Chl chlorophyll  相似文献   

11.
Three genotypically different chlorate resistant mutants, chl I, chl II and chl III, appeared to lack completely nitrate reductase A, chlorate reductase C and tetrathionate reductase activity. Fumarate reductase is only partially affected in chl I and chl III and unaffected in chl II. Formate dehydrogenase is only partially diminished in chl II, hydrogenase is diminished in chl I and chl II and completely absent in chl III.Subunits of nitrate reductase A, chlorate reductase C and tetrathionate reductase have been identified in protein profiles of purified cytoplasmic membranes from the wild type and the three mutant strains, grown under various conditions. Only the presence and absence of the largest subunits of these enzymes appeared to be correlated with their repression and derepression in the wild type membranes. On the cytoplasmic membranes of the chl I and chl III mutants these subunits lack for the greater part. In the chl II mutant, however, these subunits are inserted in the membrane all together after anaerobic growth with or without nitrate.A model for the repression/derepression mechanism for the reductases has been proposed. It includes repression by cytochrome b components, whereas the redox-state of the nitrate reductase A molecule itself is also involved in its derepression under anaerobic conditions.  相似文献   

12.
A neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis OC (CCUG 10702) and studied by sugar and methylation analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text]. Based on the unique structure of the O-polysaccharide and serological data, we propose classifying P. mirabilis OC (CCUG 10702) into a new separate Proteus serogroup O75. A weak cross-reaction of O-antiserum against P. mirabilis OC with the lipopolysaccharide of P. mirabilis O49 was accounted for by a similarity in the O-polysaccharide structures.  相似文献   

13.
The gene encoding catalase from the psychrophilic marine bacterium Vibrio salmonicida LFI1238 was identified, cloned and expressed in the catalase-deficient Escherichia coli UM2. Recombinant catalase from V. salmonicida (VSC) was purified to apparent homogeneity as a tetramer with a molecular mass of 235 kDa. VSC contained 67% heme b and 25% protoporphyrin IX. VSC was able to bind NADPH, react with cyanide and form compounds I and II as other monofunctional small subunit heme catalases. Amino acid sequence alignment of VSC and catalase from the mesophilic Proteus mirabilis (PMC) revealed 71% identity. As for cold adapted enzymes in general, VSC possessed a lower temperature optimum and higher catalytic efficiency (k cat/K m) compared to PMC. VSC have higher affinity for hydrogen peroxide (apparent K m) at all temperatures. For VSC the turnover rate (k cat) is slightly lower while the catalytic efficiency is slightly higher compared to PMC over the temperature range measured, except at 4°C. Moreover, the catalytic efficiency of VSC and PMC is almost temperature independent, except at 4°C where PMC has a twofold lower efficiency compared to VSC. This may indicate that VSC has evolved to maintain a high efficiency at low temperatures.  相似文献   

14.
An acidic O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Proteus mirabilis CCUG 10701 (OB) and studied by chemical analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: --> 3)-beta-D-GlcpNAc6Ac-(1 --> 2)-beta-D-GalpA4Ac-(1--> 3)-alpha-D-GalpNAc-(1 --> 4)-alpha-D-GalpA-(1 -->, where the degree of O-acetylation at position 6 of GlcNAc is approximately 50% and at position 4 of beta-GalA approximately 60%. Based on the unique structure of the O-polysaccharide and serological data, it is proposed to classify P. mirabilis CCUG 10701 (OB) into a new Proteus serogroup, O74.  相似文献   

15.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

16.
This work provides the first extensive study of the redox reactivity of the pyranopterin system that is a component of the catalytic site of all molybdenum and tungsten enzymes possessing molybdopterin. The pyranopterin system possesses certain characteristics typical of tetrahydropterins, such as a reduced pyrazine ring; however, it behaves as a dihydropterin in redox reactions with oxidants. Titrations using ferricyanide and dichloroindophenol (DCIP) prove a 2e/2H+ stoichiometry for pyranopterin oxidations. Oxidations of pyranopterin by Fe(CN)6 3– or DCIP are slower than tetrahydropterin oxidation under a variety of conditions, but are considerably faster than observed for oxidations of dihydropterin. The rate of pyranopterin oxidation by DCIP was studied in a variety of media. In aqueous buffered solution the pyranopterin oxidation rate has minimal pH dependence, whereas the rate of tetrahydropterin oxidation decreases 100-fold over the pH range 7.4–8.5. Although pyranopterin reacts as a dihydropterin with oxidants, it resists further reduction to a tetrahydropterin. No reduction was achieved by catalytic hydrogenation, even after several days. The reducing ability of the commonly used biological reductants dithionite and methyl viologen radical cation was investigated, but experiments showed no evidence of pyranopterin reduction by any of these reducing agents. This study illustrates the dual personalities of pyranopterin and underscores the unique place that the pyranopterin system holds in the spectrum of pterin redox reactions. The work presented here has important implications for understanding the biosynthesis and reaction chemistry of the pyranopterin cofactor in molybdenum and tungsten enzymes.Abbreviations DCIP dichloroindophenol - H4DMP 6,7-dimethyltetrahydropterin - MV+ methyl viologen radical cation  相似文献   

17.
The structure of the O-polysaccharide of the lipopolysaccharide of Proteus mirabilis 2002 was elucidated by chemical methods and 1H and 13C NMR spectroscopy. It was found that the polysaccharide consists of branched pentasaccharide repeating units having the following structure: [structure in text]. The O-polysaccharide of P. mirabilis 2002 has a common tetrasaccharide fragment with that of P. mirabilis 52/57 from serogroup O29, and the lipopolysaccharides of the two strains are serologically related. Therefore, based on the structural and serological data, we propose to classify P. mirabilis 2002 into the Proteus O29 serogroup as a subgroup O29a,29b.  相似文献   

18.
The following structure of the O-polysaccharide (O-antigen) of the lipopolysaccharide of Proteus mirabilis O-9 was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with chemical methods: [chemical structure: see text] where the degree of O-acetylation is approximately 70%. Immunochemical studies using rabbit polyclonal anti-Proteus mirabilis O-9 serum showed the importance of the O-acetyl groups in manifesting the serological specificity of the O-9 antigen. Anti-P. mirabilis O-9 cross-reacted with the lipopolysaccharides (LPS) of P. vulgaris O-25 and Proteus penneri 14, which could be accounted for by a structural similarity of their O-polysaccharides.  相似文献   

19.
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.  相似文献   

20.
Plasmid pRD1, an R plasmid of the P incompatibility group which carries his and nif genes from Klebsiella pneumoniae in addition to drug resistance markers derived from RP4, was transferred to His- mutants of Serratia marcescens, Erwinia herbicola and Proteus mirabilis. His+ transconjugants were obtained at low but different frequencies according to recipient genus. Transconjugants all acquired the drug resistance, and were Nif+ in S. marcescens and E. herbicola, having acetylene-reducing activities of the same order of magnitude as the parent K. pneumoniae and fixing 15N2. No evidence for nif expression in P. mirabilis transconjugants was obtained though the nif genes were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号