首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of this study was to determine if differences exist between the control strategies of two antagonist thigh muscles during knee flexion and extension muscular coactivation. Surface myoelectric signal (MES) of the quadriceps (rectus femoris) and the hamstrings (semitendinosus) were obtained from both muscles while performing step-wise increasing contractions during flexion and extension with the knee at 1.57 rad of flexion (90 degrees). The median frequency of the power density spectrum, which is related to the average muscle fiber action potential conduction velocity and therefore to motor unit recruitment, was calculated from each MES. The results suggest that, in all the subjects tested, when the muscle acts as antagonist most motor units are recruited up to 50% of the maximal voluntary force, whereas when the muscle acts as antagonist motor units are recruited up to 40% of the maximal voluntary force. The force range past 40–50% of the maximal force is also characterized by differences between the agonist/antagonist.  相似文献   

3.
In the past, most scientists conducted their inquiries of nature via inductivism, the patient accumulation of “pieces of information” in the pious hope that the sum of the parts would clarify the whole. Increasingly, modern biology employs the tools of bioinformatics and systems biology in attempts to reveal the “big picture.” Most successful laboratories engaged in the pursuit of the secrets of embryonic development, particularly those whose research focus is craniofacial development, pursue a middle road where research efforts embrace, rather than abandon, what some have called the “pedestrian” qualities of inductivism, while increasingly employing modern data mining technologies. The secondary palate has provided an excellent paradigm that has enabled examination of a wide variety of developmental processes. Examination of cellular signal transduction, as it directs embryogenesis, has proven exceptionally revealing with regard to clarification of the “facts” of palatal ontogeny—at least the facts as we currently understand them. Herein, we review the most basic fundamentals of orofacial embryology and discuss how functioning of TGFβ, BMP, Shh, and Wnt signal transduction pathways contributes to palatal morphogenesis. Our current understanding of palate medial edge epithelial differentiation is also examined. We conclude with a discussion of how the rapidly expanding field of epigenetics, particularly regulation of gene expression by miRNAs and DNA methylation, is critical to control of cell and tissue differentiation, and how examination of these epigenetic processes has already begun to provide a better understanding of, and greater appreciation for, the complexities of palatal morphogenesis. Birth Defects Research (Part C) 90:133–154, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
In recent years, as a knowledge-based discipline, bioinformatics has been made more computationally amenable. After its beginnings as a technology advocated by computer scientists to overcome problems of heterogeneity, ontology has been taken up by biologists themselves as a means to consistently annotate features from genotype to phenotype. In medical informatics, artifacts called ontologies have been used for a longer period of time to produce controlled lexicons for coding schemes. In this article, we review the current position in ontologies and how they have become institutionalized within biomedicine. As the field has matured, the much older philosophical aspects of ontology have come into play. With this and the institutionalization of ontology has come greater formality. We review this trend and what benefits it might bring to ontologies and their use within biomedicine.  相似文献   

5.
Ecological traps, which occur when animals mistakenly prefer habitats where their fitness is lower than in other available habitats following rapid environmental change, have important conservation and management implications. Empirical research has focused largely on assessing the behavioural effects of traps, by studying a small number of geographically close habitat patches. Traps, however, have also been defined in terms of their population-level effects (i.e. as preferred habitats of sufficiently low quality to cause population declines), and this is the scale most relevant for management. We systematically review the ecological traps literature to (i) describe the geographical and taxonomic distribution of efforts to study traps, (ii) examine how different traps vary in the strength of their effects on preference and fitness, (iii) evaluate the robustness of methods being used to identify traps, and (iv) determine whether the information required to assess the population-level consequences of traps has been considered. We use our results to discuss key knowledge gaps, propose improved methods to study traps, and highlight fruitful avenues for future research.  相似文献   

6.
Cellular metabolism influences life and death decisions. An emerging theme in cancer biology is that metabolic regulation is intricately linked to cancer progression. In part, this is due to the fact that proliferation is tightly regulated by availability of nutrients. Mitogenic signals promote nutrient uptake and synthesis of DNA, RNA, proteins and lipids. Therefore, it seems straight-forward that oncogenes, that often promote proliferation, also promote metabolic changes. In this review we summarize our current understanding of how ‘metabolic transformation'' is linked to oncogenic transformation, and why inhibition of metabolism may prove a cancer′s ‘Achilles'' heel''. On one hand, mutation of metabolic enzymes and metabolic stress sensors confers synthetic lethality with inhibitors of metabolism. On the other hand, hyperactivation of oncogenic pathways makes tumors more susceptible to metabolic inhibition. Conversely, an adequate nutrient supply and active metabolism regulates Bcl-2 family proteins and inhibits susceptibility to apoptosis. Here, we provide an overview of the metabolic pathways that represent anti-cancer targets and the cell death pathways engaged by metabolic inhibitors. Additionally, we will detail the similarities between metabolism of cancer cells and metabolism of proliferating cells.  相似文献   

7.
During unfavourable conditions, many arthropods have the ability to enter into diapause and synchronize their development and reproduction to seasonal patterns. Diapause or winter hibernation in insects and mites is set off by a number of cues, with photoperiod being the most well‐defined and strongest signal. This review focuses on the current knowledge of ‘‐omics’ data and the genetics of diapause in the two‐spotted spider mite Tetranychus urticae, a member of the family Tetranychidae (Arthropoda: Chelicerata: Arachnida: Acari). This species is a serious polyphagous pest and females undergo a reproductive facultative diapause when immature stages are exposed to long nights. Winter hibernation induces different physiological processes characterized by a metabolic suppression, different energy use, increased stress tolerance and the production of cryoprotectants, all initiated by a complex signal transduction pathway. Keto‐carotenoids are known to cause the deeply orange colour typical for diapausing females. Furthermore, research with colour mutants of T. urticae has shown the need for carotenoids with respect to the induction of diapause, even though the molecular‐genetic mechanisms underlying these colour phenotypes are still unknown. In addition, marked latitudinal variation in diapause incidence among populations has been observed in nature, with modes of inheritance ranging from recessive to dominant, as well as monogenic to polygenic. We end by highlighting the emerging opportunities for functional studies that aim to unravel the complex factors underlying diapause in spider mites.  相似文献   

8.
9.
10.
11.
Motor unit recruitment patterns were studied during prolonged isometric contraction using fine wire electrodes. Single motor unit potentials were recorded from the brachial biceps muscle of eight male subjects, during isometric endurance experiments conducted at relative workloads corresponding to 10% and 40% of maximal voluntary contraction (MVC), respectively. The recordings from the 10% MVC experiment demonstrated a characteristic time-dependent recruitment. As the contraction progressed both the mean number of motor unit spikes counted and the mean amplitude of the spikes increased significantly (P<0.01). This progressive increase in spike activity was the result of a discontinuous process with periods of increasing and decreasing activity. The phenomenon in which newly recruited motor units replace previously active units is termed motor unit rotation and appeared to be an important characteristic of motor control during a prolonged low level contraction. In contrast to the 10% MVC experiment, there was no indication of de novo recruitment in the 40% MVC experiment. Near the point of exhaustion a marked change in action potential shape and duration dominated the recordings. These findings demonstrate a conspicuous difference in the patterns of motor unit recruitment during a 10% and a 40% MVC sustained contraction. It is suggested that there is a close relationship between intrinsic muscle properties and central nervous system recruitment strategies which is entirely different in fatiguing high and low level isometric contractions.  相似文献   

12.
活性污泥抗生素抗性基因研究进展   总被引:5,自引:0,他引:5  
抗生素抗性在全球范围内的传播扩散严重威胁人类健康。活性污泥是污水处理系统重要的处理工艺,同时也是抗生素抗性及其发生水平基因转移的一个重要储库和热区。目前,随着研究手段和技术的不断更新,活性污泥中抗生素抗性的研究不断增加,但是仍有许多科学问题亟待解决。本文主要针对活性污泥抗生素抗性的5个主要方面进行深入讨论:(1)活性污泥中抗性基因的丰度和分布的影响因素;(2)污泥抗性基因的研究方法;(3)活性污泥抗性基因的传播与扩散;(4)污泥中抗性基因环境风险评估;(5)研究展望。本综述在活性污泥抗生素抗性研究基础上,阐述了驱动抗生素抗性扩散的基本微生物生态过程研究进展,旨在为污水处理工艺的发展和优化及抗性基因控制政策的制定提供科学基础。  相似文献   

13.
Summary At least three different proteins are implicated in the cellular transport of fatty acid moieties: a plasmalemmal membrane and a cytoplasmic fatty acid-binding protein (FABPPM and FABPC, respectively) and cytoplasmic acyl-CoA binding protein (ACBP). Their putative main physiological significance is the assurance that long-chain fatty acids and derivatives, either in transit through membranes or present in intracellular compartments, are largely complexed to proteins. FABPC distinguishes from the other proteins in that distinct types of FABPC are found in remarkable abundance in the cytoplasmic compartment of a variety of tissues. Although their mechanism of action is not yet fully elucidated, current knowledge suggests that the function of this set of proteins reaches beyond simply aiding cytoplasmic solubilization of hydrophobic ligands, but that they can be assigned several regulatory roles in cellular lipid homeostasis.  相似文献   

14.
This review describes recent advances in biosensors of potential clinical applications. Biosensors are becoming increasingly important and practical tools in pathogen detection, molecular diagnostics, environmental monitoring, food safety control as well as in homeland defense. Electrochemical biosensors are particularly promising toward these goals arising due to several combined advantages including low-cost, operation convenience, and miniaturized devices. We review the clinical applications of electrochemical biosensors based on a few selected examples, including enzyme-based biosensors, immunological biosensors and DNA biosensors.  相似文献   

15.
The current revolution in biological microscopy stems from the realisation that advances in optics and computational tools and automation make the modern microscope an instrument that can access all scales relevant to modern biology - from individual molecules all the way to whole tissues and organisms and from single snapshots to time-lapse recordings sampling from milliseconds to days. As these and more new technologies appear, the challenges of delivering them to the community grows as well. I discuss some of these challenges, and the examples where openly shared technology have made an impact on the field.  相似文献   

16.
The membrane potential (Em) is a fundamental cellular parameter that is primarily determined by the transmembrane permeabilities and concentration gradients of various ions. However, ion gradients are themselves profoundly influenced by Em due to its influence upon transmembrane ion fluxes and cell volume (Vc). These interrelationships between Em, Vc and intracellular ion concentrations make computational modelling useful or necessary in order to guide experimentation and to achieve an integrated understanding of experimental data, particularly in complex, dynamic, multi-compartment systems such as skeletal and cardiac myocytes. A variety of quantitative techniques exist that may assist such understanding, from classical approaches such as the Goldman–Hodgkin–Katz equation and the Gibbs–Donnan equilibrium, to more recent “current-summing” models as exemplified by cardiac myocyte models including those of DiFrancesco & Noble, Luo & Rudy and Puglisi & Bers, or the “charge-difference” modelling technique of Fraser & Huang so far applied to skeletal muscle. In general, the classical approaches provide useful and important insights into the relationships between Em, Vc and intracellular ion concentrations at steady state, providing their core assumptions are fully understood, while the more recent techniques permit the modelling of changing values of Em, Vc and intracellular ion concentrations. The present work therefore reviews the various approaches that may be used to calculate Em, Vc and intracellular ion concentrations with the aim of establishing the requirements for an integrated model that can both simulate dynamic systems and recapitulate the key findings of classical techniques regarding the cellular steady state. At a time when the number of cellular models is increasing at an unprecedented rate, it is hoped that this article will provide a useful and critical analysis of the mathematical techniques fundamental to each of them.  相似文献   

17.
T-cell receptor (TCR)-engineered T cells are a novel option for adoptive cell therapy used for the treatment of several advanced forms of cancer. Work using TCRengineered T cells began more than two decades ago, with numerous preclinical studies showing that such cells could mediate tumor lysis and eradication. The success of these trials provided the foundation for clinical trials, including recent clinical successes using TCRengineered T cells to target New York esophageal squamous cell carcinoma (NY-ESO-1). These successes demonstrate the potential of this approach to treat cancer. In this review, we provide a perspective on the current and future applications of TCR-engineered T cells for the treatment of cancer. Our summary focuses on TCR activation and both pre-clinical and clinical applications of TCR-engineered T cells. We also discuss how to enhance the function of TCR-engineered T cells and prolong their longevity in the tumor microenvironment.  相似文献   

18.
Hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide and the leading indication for liver transplantation. The hallmark of the disease is its propensity to evolve into chronicity, probably because viral heterogeneity allows the virus to escape immune-mediated neutralization. Treatment with interferon alpha (IFN-alpha) has been disappointing, but higher and more frequent doses, and combination therapies, including nucleoside analogs, might lead to improved suppression of HCV RNA levels. Molecular analysis of HCV before and during treatment has indicated that high viral RNA levels and the presence of HCV genotype 1 are independent predictors of poor treatment outcome. New antiviral agents in development include inhibitors of HCV replicative enzymes, such as protease, helicase and polymerase, as well as several genetic approaches, such as ribozymes and antisense oligonucleotides. The main hindrance to drug development for hepatitis C is the lack of a small animal model or a productive tissue culture system for assessing drug action.  相似文献   

19.
Motor unit (MU) synchronization is the simultaneous or near-simultaneous firing of two MUs which occurs more often than would be expected by chance. The present study sought to investigate the effects of exercise training, muscle group, and force level, by comparing the magnitude of synchronization in the biceps brachii (BB) and first dorsal interosseous (FDI) muscles of untrained and strength-trained college-aged males at two force levels, 30% of maximal voluntary contraction (MVC) and 80% MVC. MU action potentials were recorded directly via an intramuscular needle electrode. The magnitude of synchronization was assessed using previously-reported synchronization indices: k′, E, and CIS. Synchronization was significantly higher in the FDI than in the BB. Greater synchronization was observed in the strength-trained group with CIS, but not with E or k′. Also, synchronization was significantly greater at 80% MVC than at 30% MVC with E, but only moderately greater with CIS and there was no force difference with k′. Synchronization prevalence was found to be greater in the BB (80.1%) than in the FDI (71.5%). Thus, although the evidence is a bit equivocal, it appears that MU synchronization is greater at higher forces, and greater in strength-trained individuals than in untrained subjects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号