首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of insulin receptor substrate-1 (IRS-1), a key molecule of insulin signaling, is modulated by phosphorylation at multiple serine/threonine residues. Phorbol ester stimulation of cells induces phosphorylation of two inhibitory serine residues in IRS-1, i.e. Ser-307 and Ser-318, suggesting that both sites may be targets of protein kinase C (PKC) isoforms. However, in an in vitro system using a broad spectrum of PKC isoforms (alpha, beta1, beta2, delta, epsilon, eta, mu), we detected only Ser-318, but not Ser-307 phosphorylation, suggesting that phorbol ester-induced phosphorylation of this site in intact cells requires additional signaling elements and serine kinases that link PKC activation to Ser-307 phosphorylation. As we have observed recently that the tyrosine phosphatase Shp2, a negative regulator of insulin signaling, is a substrate of PKC, we studied the role of Shp2 in this context. We found that phorbol ester-induced Ser-307 phosphorylation is reduced markedly in Shp2-deficient mouse embryonic fibroblasts (Shp2-/-) whereas Ser-318 phosphorylation is unaltered. The Ser-307 phosphorylation was rescued by transfection of mouse embryonic fibroblasts with wild-type Shp2 or with a phosphatase-inactive Shp2 mutant, respectively. In this cell model, tumor necrosis factor-alpha-induced Ser-307 phosphorylation as well depended on the presence of Shp2. Furthermore, Shp2-dependent phorbol ester effects on Ser-307 were blocked by wortmannin, rapamycin, and the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. This suggests an involvement of the phosphatidylinositol 3-kinase/mammalian target of rapamycin cascade and of JNK in this signaling pathway resulting in IRS-1 Ser-307 phosphorylation. Because the activation of these kinases does not depend on Shp2, it is concluded that the function of Shp2 is to direct these activated kinases to IRS-1.  相似文献   

2.
Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.  相似文献   

3.
Inhibitory serine phosphorylation is a potential molecular mechanism for insulin resistance. We have developed a new variant of the yeast two-hybrid method, referred to as disruptive yeast tri-hybrid (Y3H), to identify inhibitory kinases and sites of phosphorylation in insulin receptors (IR) and IR substrates, IRS-1. Using IR and IRS-1 as bait and prey, respectively, and c-Jun NH(2)-terminal kinase (JNK1) as the disruptor, we now show that phosphorylation of IRS-1 Ser-307, a previously identified site, is necessary but not sufficient for JNK1-mediated disruption of IR/IRS-1 binding. We further identify a new phosphorylation site, Ser-302, and show that this too is necessary for JNK1-mediated disruption. Seven additional kinases potentially linked to insulin resistance similarly block IR/IRS-1 binding in the disruptive Y3H, but through distinct Ser-302- and Ser-307-independent mechanisms. Phosphospecific antibodies that recognize sequences surrounding Ser(P)-302 or Ser(P)-307 were used to determine whether the sites were phosphorylated under relevant conditions. Phosphorylation was promoted at both sites in Fao hepatoma cells by reagents known to promote Ser/Thr phosphorylation, including the phorbol ester phorbol 12-myristate 13-acetate, anisomycin, calyculin A, and insulin. The antibodies further showed that Ser(P)-302 and Ser(P)-307 are increased in animal models of obesity and insulin resistance, including genetically obese ob/ob mice, diet-induced obesity, and upon induction of hyperinsulinemia. These findings demonstrate that phosphorylation at both Ser-302 and Ser-307 is necessary for JNK1-mediated inhibition of the IR/IRS-1 interaction and that Ser-302 and Ser-307 are phosphorylated in parallel in cultured cells and in vivo under conditions that lead to insulin resistance.  相似文献   

4.
Ser/Thr phosphorylation of insulin receptor substrate-1 (IRS-1) is a negative regulator of insulin signaling. One potential mechanism for this is that Ser/Thr phosphorylation decreases the ability of IRS-1 to be tyrosine-phosphorylated by the insulin receptor. An additional mechanism for modulating insulin signaling is via the down-regulation of IRS-1 protein levels. Insulin-induced degradation of IRS-1 has been well documented, both in cells as well as in patients with diabetes. Ser/Thr phosphorylation of IRS-1 correlates with IRS-1 degradation, yet the details of how this occurs are still unknown. In the present study we have examined the potential role of different signaling cascades in the insulin-induced degradation of IRS-1. First, we found that inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin block the degradation. Second, knockout cells lacking one of the key effectors of this cascade, the phosphoinositide-dependent kinase-1, were found to be deficient in the insulin-stimulated degradation of IRS-1. Conversely, overexpression of this enzyme potentiated insulin-stimulated IRS-1 degradation. Third, concurrent with the decrease in IRS-1 degradation, the inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin also blocked the insulin-stimulated increase in Ser(312) phosphorylation. Most important, an IRS-1 mutant in which Ser(312) was changed to alanine was found to be resistant to insulin-stimulated IRS-1 degradation. Finally, an inhibitor of c-Jun N-terminal kinase, SP600125, at 10 microm did not block IRS-1 degradation and IRS-1 Ser(312) phosphorylation yet completely blocked insulin-stimulated c-Jun phosphorylation. Further, insulin-stimulated c-Jun phosphorylation was not blocked by inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin, indicating that c-Jun N-terminal kinase is unlikely to be the kinase phosphorylating IRS-1 Ser(312) in response to insulin. In summary, our results indicate that the insulin-stimulated degradation of IRS-1 via the phosphatidylinositol 3-kinase pathway is in part dependent upon the Ser(312) phosphorylation of IRS-1.  相似文献   

5.
c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.  相似文献   

6.
Tumor necrosis factor alpha (TNFalpha) inhibits insulin action, in part, through serine phosphorylation of IRS proteins; however, the phosphorylation sites that mediate the inhibition are unknown. TNFalpha promotes multipotential signal transduction cascades, including the activation of the Jun NH(2)-terminal kinase (JNK). Endogenous JNK associates with IRS-1 in Chinese hamster ovary cells. Anisomycin, a strong activator of JNK in these cells, stimulates the activity of JNK bound to IRS-1 and inhibits the insulin-stimulated tyrosine phosphorylation of IRS-1. Serine 307 is a major site of JNK phosphorylation in IRS-1. Mutation of serine 307 to alanine eliminates phosphorylation of IRS-1 by JNK and abrogates the inhibitory effect of TNFalpha on insulin-stimulated tyrosine phosphorylation of IRS-1. These results suggest that phosphorylation of serine 307 might mediate, at least partially, the inhibitory effect of proinflammatory cytokines like TNFalpha on IRS-1 function.  相似文献   

7.
Differentiation of preadipocytes into functional adipocytes depends on early proliferative events (mitotic clonal expansion) and extracellular matrix interactions. We report that discoidin domain receptor (DDR) 2, a novel adhesion receptor, is expressed in 3T3-L1 preadipocytes and is downregulated during the early phase of adipogenesis. DDR2 overexpression (DDR2-L1 preadipocytes) reduced subconfluent proliferation by 56% (p<0.001) and insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 by 34% (p<0.05). The mitotic clonal expansion phase of differentiating confluent DDR2-L1 preadipocytes was impaired by approximately 25% (p<0.05). Although induction of peroxisome proliferator-activated receptor gamma, fatty acid synthase, and adiponectin was not altered, the resulting adipocytes were 55% larger (p<0.05), and contained 66% more triacylglycerol (p<0.01). The induction of CCAAT/enhancer binding protein alpha was reduced by 37% (p<0.05), correlating with a similar reduction in insulin-stimulated IRS-1 tyrosine phosphorylation and glucose transport in DDR2-L1 adipocytes (decreases of 22% and 27%, respectively; p<0.05 for both). Our data show that DDR2 is expressed in adipose cells and that its overexpression leads to insulin resistance.  相似文献   

8.
Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling.  相似文献   

9.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) reduces its ability to act as an insulin receptor substrate and inhibits insulin receptor signal transduction. Here, we report that serine phosphorylation of IRS-1 induced by either okadaic acid (OA) or chronic insulin stimulation prevents interferon-alpha (IFN-alpha)-dependent IRS-1 tyrosine phosphorylation and IFN-alpha-dependent IRS-1/phosphatidylinositol 3'-kinase (PI3K) association. In addition, we demonstrate that serine phosphorylation of IRS-1 renders it a poorer substrate for JAK1 (Janus kinase-1). We found that treatment of U266 cells with OA induced serine phosphorylation of IRS-1 and completely blocked IFN-alpha-dependent tyrosine phosphorylation of IRS-1 and IFN-alpha-dependent IRS-1/PI3K association. Additionally, IRS-1 from OA-treated cells could not be phosphorylated in vitro by IFN-alpha-activated JAK1. Chronic treatment of U266 cells with insulin led to a 50% reduction in IFN-alpha-dependent tyrosine phosphorylation of IRS-1 and IRS-1/PI3K association. More importantly, serine-phosphorylated IRS-1-(511-722) could not be phosphorylated in vitro by IFN-alpha-activated JAK1. Taken together, these data indicate that serine phosphorylation of IRS-1 prevents its subsequent tyrosine phosphorylation by JAK1 and suggest that IRS-1 serine phosphorylation may play a counter-regulatory role in pathways outside the insulin signaling system.  相似文献   

10.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.  相似文献   

11.
NAD+ -dependent Sir2 family deacetylases and insulin signaling pathway are both conserved across species to regulate aging process. The interplay between these two genetic programs is investigated in this study. Protein deacetylase activity of SirT1, the mammalian homologue of Sir2, was suppressed through either nicotinamide treatment or RNA interference in several cell lines, and these cells displayed impaired insulin responses. Suppression of SirT1 activity also selectively inhibited insulin-induced tyrosine phosphorylation of insulin receptor substrate 2 (IRS-2), whereas it had minimal effect on that of IRS-1. Further analyses showed that both IRS-1 and IRS-2 interacted with SirT1, and the acetylation level of IRS-2 was down-regulated by insulin treatment. Inhibition of SirT1 activity prevented deacetylation and insulin-induced tyrosine phosphorylation of IRS-2. Mutations of four lysine residues to alanine in IRS-2 protein, on the other hand, led to its reduced basal level acetylation and insulin-induced tyrosine phosphorylation. These results suggest a possible regulatory effect of SirT1 on insulin-induced tyrosine phosphorylation of IRS-2, a vital step in insulin signaling pathway, through deacetylation of IRS-2 protein. More importantly, this study may imply a pathway through which Sir2 family protein deacetylases and insulin signaling pathway jointly regulate various metabolic processes, including aging and diabetes.  相似文献   

12.
Insulin resistance, the failure to respond to normal circulating concentrations of insulin, is a common state associated with obesity, aging, and a sedentary lifestyle. Compelling evidence implicates TNFalpha as the cause and link between obesity and insulin resistance. Serine phosphorylation of insulin receptor substrate-1 seems prominent among the mechanisms of TNFalpha-induced insulin resistance. Recent advances indicate that serine kinases may phosphorylate and thus inhibit the tyrosine phosphorylation of insulin receptor substrate-1, revealing an integration point of TNFalpha and insulin signaling pathways. Selective targeting of the molecular scenery whereby this key phosphorylation occurs/operates represents a rich area for the development of rationally designed new antidiabetic drugs. In relation to efficacy and side effects, this prospect should permit a more precise and perhaps individualized approach to therapeutic intervention, allowing clinicians to focus the attack where the problem lies.  相似文献   

13.

Background  

Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation.  相似文献   

14.
Chronic hepatitis C virus (HCV) infection has a significantly increased prevalence of type 2 diabetes mellitus (T2DM). Insulin resistance is a critical component of T2DM pathogenesis. Several mechanisms are likely to be involved in the pathogenesis of HCV-related insulin resistance. Since we and others have previously observed that HCV core protein activates c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase, we examined the contribution of these pathways to insulin resistance in hepatocytes. Our experimental findings suggest that HCV core protein alone or in the presence of other viral proteins increases Ser(312) phosphorylation of the insulin receptor substrate-1 (IRS-1). Hepatocytes infected with cell culture-grown HCV genotype 1a or 2a displayed a significant increase in the Ser(473) phosphorylation status of the Ser/Thr kinase protein kinase B (Akt/PKB), while Thr(308) phosphorylation was not significantly altered. HCV core protein-mediated Ser(312) phosphorylation of IRS-1 was inhibited by JNK (SP600125) and phosphatidylinositol-3 kinase (LY294002) inhibitors. A functional assay also suggested that hepatocytes expressing HCV core protein alone or infected with cell culture-grown HCV exhibited a suppression of 2-deoxy-d-[(3)H]glucose uptake. Inhibition of the JNK signaling pathway significantly restored glucose uptake despite HCV core expression in hepatocytes. Taken together, our results demonstrated that HCV core protein increases IRS-1 phosphorylation at Ser(312) which may contribute in part to the mechanism of insulin resistance.  相似文献   

15.
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cellsubstratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell’s underside by the thin lamellae and filopodia of a cell in close apposition.  相似文献   

16.
D M Smith  G J Sale 《FEBS letters》1989,242(2):301-304
Insulin receptor was copurified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. Analysis of phosphorylated insulin receptor by two-dimensional tryptic peptide mapping showed that sites of insulin stimulated serine phosphorylation in the insulin receptor were recovered in the same peptides as those known to be phosphorylated on serine in vivo in response to insulin. This indicates that the serine kinase copurified with the insulin receptor represents a physiologically important enzyme involved in the insulin triggered serine phosphorylation of the insulin receptor in vivo.  相似文献   

17.
Insulin signaling can be negatively regulated by phosphorylation of serine 307 of the insulin receptor substrate (IRS)-1. Rapamycin, an inhibitor of the kinase mTOR, can prevent serine 307 phosphorylation and the development of insulin resistance. We further investigated the role of mTOR in regulating serine 307 phosphorylation, demonstrating that serine 307 phosphorylation in response to insulin, anisomycin, or tumor necrosis factor was quantitatively and temporally associated with activation of mTOR and could be inhibited by rapamycin. Amino acid stimulation activated mTOR and resulted in IRS-1 serine 307 phosphorylation without activating PKB or JNK. Okadaic acid, an inhibitor of the phosphatase PP2A, activated mTOR and stimulated the phosphorylation of serine 307 in a rapamycin-sensitive manner, indicating serine 307 phosphorylation requires mTOR activity but not PP2A, suggesting that mTOR itself may be responsible for phosphorylating serine 307. Finally, we demonstrated that serine 307 phosphorylated IRS-1 is detected primarily in the cytosolic fraction.  相似文献   

18.
The ability of glycogen synthase kinase-3 (GSK-3) to phosphorylate insulin receptor substrate-1 (IRS-1) is a potential inhibitory mechanism for insulin resistance in type 2 diabetes. However, the serine site(s) phosphorylated by GSK-3 within IRS-1 had not been yet identified. Using an N-terminal deleted IRS-1 mutant and two IRS-1 fragments, PTB-1 1-320 and PTB-2 1-350, we localized GSK-3 phosphorylation site(s) within amino acid sequence 320-350. Mutations of serine 332 or 336, which lie in the GSK-3 consensus motif (SXXXS) within PTB-2 or IRS-1, to alanine abolished their phosphorylation by GSK-3. This suggested that Ser332 is a GSK-3 phosphorylation site and that Ser336 serves as the "priming" site typically required for GSK-3 action. Indeed, dephosphorylation of IRS-1 prevented GSK-3 phosphorylation. Furthermore, the phosphorylated peptide derived from the IRS-1 sequence was readily phosphorylated by GSK-3, in contrast to the nonphosphorylated peptide, which was not phosphorylated by the enzyme. When IRS-1 mutants S332A(IRS-1), S336A(IRS-1), or S332A/336A(IRS-1) were expressed in Chinese hamster ovary cells overexpressing insulin receptors, their insulin-induced tyrosine phosphorylation levels increased compared with that of wild-type (WT) IRS-1. This effect was stronger in the double mutant S332A/336A(IRS-1) and led to enhanced insulin-mediated activation of protein kinase B. Finally, immunoblot analysis with polyclonal antibody directed against IRS-1 phosphorylated at Ser332 confirmed IRS-1 phosphorylation in cultured cells. Moreover, treatment with the GSK-3 inhibitor lithium reduced Ser332 phosphorylation, whereas overexpression of GSK-3 enhanced this phosphorylation. In summary, our studies identify Ser332 as the GSK-3 phosphorylation target in IRS-1, indicating its physiological relevance and demonstrating its novel inhibitory role in insulin signaling.  相似文献   

19.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   

20.
Insulin receptor substrate-1 (IRS-1) is a major substrate of the insulin receptor and acts as a docking protein for Src homology 2 domain containing signaling molecules that mediate many of the pleiotropic actions of insulin. Insulin stimulation elicits serine/threonine phosphorylation of IRS-1, which produces a mobility shift on SDS-PAGE, followed by degradation of IRS-1 after prolonged stimulation. We investigated the molecular mechanisms and the functional consequences of these phenomena in 3T3-L1 adipocytes. PI 3-kinase inhibitors or rapamycin, but not the MEK inhibitor, blocked both the insulin-induced electrophoretic mobility shift and degradation of IRS-1. Adenovirus-mediated expression of a membrane-targeted form of the p110 subunit of phosphatidylinositol (PI) 3-kinase (p110CAAX) induced a mobility shift and degradation of IRS-1, both of which were inhibited by rapamycin. Lactacystin, a specific proteasome inhibitor, inhibited insulin-induced degradation of IRS-1 without any effect on its electrophoretic mobility. Inhibition of the mobility shift did not significantly affect tyrosine phosphorylation of IRS-1 or downstream insulin signaling. In contrast, blockade of IRS-1 degradation resulted in sustained activation of Akt, p70 S6 kinase, and mitogen-activated protein (MAP) kinase during prolonged insulin treatment. These results indicate that insulin-induced serine/threonine phosphorylation and degradation of IRS-1 are mediated by a rapamycin-sensitive pathway, which is downstream of PI 3-kinase and independent of ras/MAP kinase. The pathway leads to degradation of IRS-1 by the proteasome, which plays a major role in down-regulation of certain insulin actions during prolonged stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号