共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Heteronuclear NMR spectroscopy and other experiments indicate that the true substrate of the E1 component of 2-oxo acid dehydrogenase complexes is not lipoic acid but the lipoyl domain of the E2 component. E1 can recognize the lipoyl-lysine residue as such, but reductive acylation ensues only if the domain to which the lipoyl group is attached is additionally recognized by virtue of a mosaic of contacts distributed chiefly over the half of the domain that contains the lipoyl-lysine residue. The lipoyl-lysine residue may not be freely swinging, as supposed hitherto, but may adopt a preferred orientation pointing towards a nearby loop on the surface of the lipoyl domain. This in turn may facilitate the insertion of the lipoyl group into the active site of E1, where reductive acylation is to occur. The results throw new light on the concept of substrate channelling and active-site coupling in these giant multifunctional catalytic machines. 相似文献
3.
Crystal structure of 2-oxoisovalerate and dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes. 总被引:5,自引:0,他引:5
The family of giant multienzyme complexes metabolizing pyruvate, 2-oxoglutarate, branched-chain 2-oxo acids or acetoin contains several of the largest and most sophisticated protein assemblies known, with molecular masses between 4 and 10 million Da. The principal enzyme components, E1, E2 and E3, are present in numerous copies and utilize multiple cofactors to catalyze a directed sequence of reactions via substrate channeling. The crystal structure of a heterotetrameric (alpha2beta2) E1, 2-oxoisovalerate dehydrogenase from Pseudomonas putida, reveals a tightly packed arrangement of the four subunits with the beta2-dimer held between the jaws of a 'vise' formed by the alpha2-dimer. A long hydrophobic channel, suitable to accommodate the E2 lipoyl-lysine arm, leads to the active site, which contains the cofactor thiamin diphosphate (ThDP) and an inhibitor-derived covalent modification of a histidine side chain. The E1 structure, together with previous structural information on E2 and E3, completes the picture of the shared architectural features of these enormous macromolecular assemblies. 相似文献
4.
Kinetics and specificity of reductive acylation of lipoyl domains from 2-oxo acid dehydrogenase multienzyme complexes 总被引:3,自引:0,他引:3
Lipoamide and a peptide, Thr-Val-Glu-Gly-Asp-Lys-Ala-Ser-Met-Glu lipoylated on the N6-amino group of the lysine residue, were tested as substrates for reductive acetylation by the pyruvate decarboxylase (E1p) component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The peptide has the same amino acid sequence as that surrounding the three lipoyllysine residues in the lipoate acetyltransferase (E2p) component of the native enzyme complex. Lipoamide was shown to be a very poor substrate, with a Km much higher than 4 mM and a value of kcat/Km of 1.5 M-1.s-1. Under similar conditions, the three E2p lipoyl domains, excised from the pyruvate dehydrogenase complex by treatment with Staphylococcus aureus V8 proteinase, could be reductively acetylated by E1p much more readily, with a typical Km of approximately 26 microM and a typical kcat of approximately 0.8 s-1. The value of kcat/Km for the lipoyl domains, approximately 3.0 x 10(4) M-1.s-1, is about 20,000 times higher than that for lipoamide as a substrate. This indicates the great improvement in the effectiveness of lipoic acid as a substrate for E1p that accompanies the attachment of the lipoyl group to a protein domain. The free E2o lipoyl domain was similarly found to be capable of being reductively succinylated by the 2-oxoglutarate decarboxylase (E1o) component of the 2-oxoglutarate dehydrogenase complex of E. coli. The 2-oxo acid dehydrogenase complexes are specific for their particular 2-oxo acid substrates. The specificity of the E1 components was found to extend also to the lipoyl domains.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
2-Oxo acid dehydrogenase complexes are important metabolic checkpoints functioning at the intercept of sugar and amino acid degradation. This review presents a short summary of architectural, catalytic, and regulatory principles of the complexes structure and function, based on recent advances in studies of well-characterized family members. Special attention is given to use of synthetic phosphonate and phosphinate analogs of 2-oxo acids as selective and efficient inhibitors of the cognate complexes in biological systems of bacterial, plant, and animal origin. We summarize our own results concerning the application of synthetic analogs of 2-oxo acids in situ and in vivo to reveal functional interactions between 2-oxo acid dehydrogenase complexes and other components of metabolic networks specific to different cells and tissues. Based on our study of glutamate excitotoxicity in cultured neurons, we show how a modulation of metabolism by specific inhibition of its key reaction may be employed to correct pathologies. This approach is further developed in our study on the action of the phosphonate analog of 2-oxoglutarate in animals. The study revealed that upregulation of 2-oxoglutarate dehydrogenase complex is involved in animal stress response and may provide increased resistance to damaging effects, underlying so-called preconditioning. The presented analysis of published data suggests synthetic inhibitors of metabolic checkpoints as promising tools to solve modern challenges of systems biology, metabolic engineering, and medicine. 相似文献
6.
The thiamine-dependent E1o component (EC 1.2.4.2) of the 2-oxoglutarate dehydrogenase complex catalyses a rate-limiting step of the tricarboxylic acid cycle (TCA) of aerobically respiring organisms. We describe the crystal structure of Escherichia coli E1o in its apo and holo forms at 2.6 A and 3.5 A resolution, respectively. The structures reveal the characteristic fold that binds thiamine diphosphate and resemble closely the alpha(2)beta(2) hetero-tetrameric E1 components of other 2-oxo acid dehydrogenase complexes, except that in E1o, the alpha and beta subunits are fused as a single polypeptide. The extended segment that links the alpha-like and beta-like domains forms a pocket occupied by AMP, which is recognised specifically. Also distinctive to E1o are N-terminal extensions to the core fold, and which may mediate interactions with other components of the 2-oxoglutarate dehydrogenase multienzyme complex. The active site pocket contains a group of three histidine residues and one serine that appear to confer substrate specificity and the capacity to accommodate the TCA metabolite oxaloacetate. Oxaloacetate inhibits E1o activity at physiological concentrations, and we suggest that the inhibition may allow coordinated activity within the TCA cycle. We discuss the implications for metabolic control in facultative anaerobes, and for energy homeostasis of the mammalian brain. 相似文献
7.
S J Yeaman 《The Biochemical journal》1989,257(3):625-632
8.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor. 相似文献
9.
Low immunogenicity of the common lipoamide dehydrogenase subunit (E3) of mammalian pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes. 总被引:3,自引:0,他引:3
下载免费PDF全文

The production of high-titre monospecific polyclonal antibodies against the purified pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart is described. The specificity of these antisera and their precise reactivities with the individual components of the complexes were examined by immunoblotting techniques. All the subunits of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes were strongly antigenic, with the exception of the common lipoamide dehydrogenase component (E3). The titre of antibodies raised against E3 was, in both cases, less than 2% of that of the other subunits. Specific immunoprecipitation of the dissociated N-[3H]ethylmaleimide-labelled enzymes also revealed that E3 alone was absent from the final immune complexes. Strong cross-reactivity with the enzyme present in rat liver (BRL) and ox kidney (NBL-1) cell lines was observed when the antibody against ox heart pyruvate dehydrogenase was utilized to challenge crude subcellular extracts. The immunoblotting patterns again lacked the lipoamide dehydrogenase band, also revealing differences in the apparent Mr of the lipoate acetyltransferase subunit (E2) from ox kidney and rat liver. The additional 50 000-Mr polypeptide, previously found to be associated with the pyruvate dehydrogenase complex, was apparently not a proteolytic fragment of E2 or E3, since it could be detected as a normal component in boiled sodium dodecyl sulphate extracts of whole cells. The low immunogenicity of the lipoamide dehydrogenase polypeptide may be attributed to a high degree of conservation of its primary sequence and hence tertiary structure during evolution. 相似文献
10.
We have expressed an active recombinant E1 decarboxylase component of the mammalian branched-chain alpha-ketoacid dehydrogenase complex in Escherichia coli by subcloning mature E1 alpha and E1 beta subunit cDNA sequences into a bacterial expression vector. To permit affinity purification under native conditions, the mature E1 alpha subunit was fused with the affinity ligand E. coli maltose-binding protein (MBP) through an endoprotease Factor Xa-specific linker peptide. When co-expressed, the MBP-E1 alpha fusion and E1 beta subunits were shown to co-purify as a MBP-E1 component that exhibited both E1 activity and binding competence for recombinant branched-chain E2 component. In contrast, in vitro mixing of individually expressed MBP-E1 alpha and E1 beta did not result in assembly or produce E1 activity. Following proteolytic removal of the affinity ligand and linker peptide with Factor Xa, a recombinant E1 species was eluted from a Sephacryl S-300HR sizing column as an enzymatically active 160-kDa species. The latter showed 1:1 subunit stoichiometry, which was consistent with an alpha 2 beta 2 structure. The recovery of this 160-kDa recombinant E1 species (estimated at 0.07% of total lysate protein) was low, with the majority of the recombinant protein lost as insoluble aggregates. Our findings suggest that the concurrent expression of both E1 alpha and E1 beta subunits in the same cellular compartment is important for assembly of both subunits into a functional E1 alpha 2 beta 2 heterotetramer. By using this co-expression system, we also find that the E1 alpha missense mutation (Tyr-393----Asn) characterized in Mennonites with maple syrup urine disease prevents the assembly of soluble E1 heterotetramers. 相似文献
11.
Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes. 相似文献
12.
Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein 总被引:21,自引:0,他引:21
R N Perham 《Biochemistry》1991,30(35):8501-8512
13.
Molecular basis of maple syrup urine disease: novel mutations at the E1 alpha locus that impair E1(alpha 2 beta 2) assembly or decrease steady-state E1 alpha mRNA levels of branched-chain alpha-keto acid dehydrogenase complex. 总被引:1,自引:1,他引:1
下载免费PDF全文

J. L. Chuang C. R. Fisher R. P. Cox D. T. Chuang 《American journal of human genetics》1994,55(2):297-304
We report the occurrence of three novel mutations in the E1 alpha (BCKDHA) locus of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1 alpha gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1 alpha subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1 alpha mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1 alpha subunit impairs its proper assembly with the normal E1 beta. Unassembled as well as misassembled E1 alpha and E1 beta subunits are degraded in the cell. 相似文献
14.
Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species.
Self-regulation of the 2-oxo acid dehydrogenase complexes during catalysis was studied. Radical species as side products of catalysis were detected by spin trapping, lucigenin fluorescence and ferricytochrome c reduction. Studies of the complexes after converting the bound lipoate or FAD cofactors to nonfunctional derivatives indicated that radicals are generated via FAD. In the presence of oxygen, the 2-oxo acid, CoA-dependent production of the superoxide anion radical was detected. In the absence of oxygen, a protein-bound radical concluded to be the thiyl radical of the complex-bound dihydrolipoate was trapped by alpha-phenyl-N-tert-butylnitrone. Another, carbon-centered, radical was trapped in anaerobic reaction of the complex with 2-oxoglutarate and CoA by 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO). Generation of radical species was accompanied by the enzyme inactivation. A superoxide scavenger, superoxide dismutase, did not protect the enzyme. However, a thiyl radical scavenger, thioredoxin, prevented the inactivation. It was concluded that the thiyl radical of the complex-bound dihydrolipoate induces the inactivation by 1e- oxidation of the 2-oxo acid dehydrogenase catalytic intermediate. A product of this oxidation, the DMPO-trapped radical fragment of the 2-oxo acid substrate, inactivates the first component of the complex. The inactivation prevents transformation of the 2-oxo acids in the absence of terminal substrate, NAD+. The self-regulation is modulated by thioredoxin which alleviates the adverse effect of the dihydrolipoate intermediate, thus stimulating production of reactive oxygen species by the complexes. The data point to a dual pro-oxidant action of the complex-bound dihydrolipoate, propagated through the first and third component enzymes and controlled by thioredoxin and the (NAD+ + NADH) pool. 相似文献
15.
Kinetic studies on partially liganded species of carboxyhemoglobin: (alpha 1CO-beta 1CO)alpha 2 beta 2 or (alpha 2CO beta 2CO)alpha 1 beta 1 总被引:1,自引:0,他引:1
V S Sharma 《The Journal of biological chemistry》1989,264(18):10582-10588
Kinetics of CO combination with and dissociation from isomer III, (alpha 1CO beta 1CO)alpha 2 beta 2 or alpha 1 beta 1 (alpha 2CO beta 2CO), and Hb Rothschild have been studied using the double mixing and microperoxidase methods. Isomer III was prepared in a manner so that it was the only reactive species in the reaction mixture. The biphasic reaction time course in both the "on" and "off" reactions of isomer III and the CO combination reaction of Hb Rothschild are attributed to slow relaxation between the fast and slow CO-reacting species in the two proteins: isomer III: l'f = 6 x 10(6) M-1 s-1, l'dimer = 1.7 x 10(6) M-1 s-1, l's = 2.2 x 10(5) M-1 s-1, lf = 0.15 s-1, ls = 0.01 s-1; Hb Rothschild: l'f = 2.8 x 10(6) M-1 s-1; l's = 2.7 x 10(5) M-1 s-1. 相似文献
16.
Arjunan P Nemeria N Brunskill A Chandrasekhar K Sax M Yan Y Jordan F Guest JR Furey W 《Biochemistry》2002,41(16):5213-5221
The crystal structure of the recombinant thiamin diphosphate-dependent E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined at a resolution of 1.85 A. The E. coli PDHc E1 component E1p is a homodimeric enzyme and crystallizes with an intact dimer in an asymmetric unit. Each E1p subunit consists of three domains: N-terminal, middle, and C-terminal, with all having alpha/beta folds. The functional dimer contains two catalytic centers located at the interface between subunits. The ThDP cofactors are bound in the "V" conformation in clefts between the two subunits (binding involves the N-terminal and middle domains), and there is a common ThDP binding fold. The cofactors are completely buried, as only the C2 atoms are accessible from solution through the active site clefts. Significant structural differences are observed between individual domains of E1p relative to heterotetrameric multienzyme complex E1 components operating on branched chain substrates. These differences may be responsible for reported alternative E1p binding modes to E2 components within the respective complexes. This paper represents the first structural example of a functional pyruvate dehydrogenase E1p component from any species. It also provides the first representative example for the entire family of homodimeric (alpha2) E1 multienzyme complex components, and should serve as a model for this class of enzymes. 相似文献
17.
Howard MJ Chauhan HJ Domingo GJ Fuller C Perham RN 《Journal of molecular biology》2000,295(4):1023-1037
T(2) relaxation experiments in combination with chemical shift and site-directed mutagenesis data were used to identify sites involved in weak but specific protein-protein interactions in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. The pyruvate decarboxylase component, a heterotetramer E1(alpha(2)beta(2)), is responsible for the first committed and irreversible catalytic step. The accompanying reductive acetylation of the lipoyl group attached to the dihydrolipoyl acetyltransferase (E2) component involves weak, transient but specific interactions between E1 and the lipoyl domain of the E2 polypeptide chain. The interactions between the free lipoyl domain (9 kDa) and free E1alpha (41 kDa), E1beta (35 kDa) and intact E1alpha(2)beta(2) (152 kDa) components, all the products of genes or sub-genes over-expressed in Escherichia coli, were investigated using heteronuclear 2D NMR spectroscopy. The experiments were conducted with uniformly (15)N-labeled lipoyl domain and unlabeled E1 components. Major contact points on the lipoyl domain were identified from changes in the backbone (15)N spin-spin relaxation time in the presence and absence of E1(alpha(2)beta(2)) or its individual E1alpha or E1beta components. Although the E1alpha subunit houses the sequence motif associated with the essential cofactor, thiamin diphosphate, recognition of the lipoyl domain was distributed over sites in both E1alpha and E1beta. A single point mutation (N40A) on the lipoyl domain significantly reduces its ability to be reductively acetylated by the cognate E1. None the less, the N40A mutant domain appears to interact with E1 similarly to the wild-type domain. This suggests that the lipoyl group of the N40A lipoyl domain is not being presented to E1 in the correct orientation, owing perhaps to slight perturbations in the lipoyl domain structure, especially in the lipoyl-lysine beta-turn region, as indicated by chemical shift data. Interaction with E1 and subsequent reductive acetylation are not necessarily coupled. 相似文献
18.
19.
Determinants of ligand binding specificity of the alpha(1)beta(1) and alpha(2)beta(1) integrins. 总被引:2,自引:0,他引:2
S K Dickeson N L Mathis M Rahman J M Bergelson S A Santoro 《The Journal of biological chemistry》1999,274(45):32182-32191
The alpha(1)beta(1) and alpha(2)beta(1) integrins are cell surface collagen receptors. Cells expressing the alpha(1)beta(1) integrin preferentially adhere to collagen IV, whereas cells expressing the alpha(2)beta(1) integrin preferentially adhere to collagen I. Recombinant alpha(1) and alpha(2) integrin I domains exhibit the same collagen type preferences as the intact integrins. In addition, the alpha(2) integrin I domain binds echovirus 1; the alpha(1) I domain does not. To identify the structural components of the I domains responsible for the varying ligand specificities, we have engineered several alpha(1)/alpha(2) integrin I domain chimeras and evaluated their virus and collagen binding activities. Initially, large secondary structural components of the alpha(2) I domain were replaced with corresponding regions of the alpha(1) I domain. Following analysis in echovirus 1 and collagen binding assays, chimeras with successively smaller regions of alpha(1) I were constructed and analyzed. The chimeras were analyzed by ELISA with several different alpha(2) integrin monoclonal antibodies to assess their proper folding. Three different regions of the alpha(1) I domain, when present in the alpha(2) I domain, conferred enhanced collagen IV binding activity upon the alpha(2) I domain. These include the alpha3 and alpha5 helices and a portion of the alpha6 helix. Echovirus 1 binding was lost in a chimera containing the alphaC-alpha6 loop; higher resolution mapping identified Asn(289) as playing a critical role in echovirus 1 binding. Asn(289) had not been implicated in previous echovirus 1 binding studies. Taken together, these data reveal the existence of multiple determinants of ligand binding specificities within the alpha(1) and alpha(2) integrin I domains. 相似文献
20.
A continuous spectrophotometric assay has been devised for dihydrolipoamide transacetylase and transsuccinylase, the E2 components of the pyruvate and α-oxoglutarate dehydrogenase enzyme complexes. The procedure offers several advantages over other available methods. 相似文献