首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetic analysis of the inhibition of the phosphorylation of Kemptide, (LRRASLG), catalyzed by the catalytic subunit of cAMP-dependent protein kinase, by a peptide-nucleoside conjugate inhibitor AdcAhxArg6 was carried out over a wide range of ATP and peptide concentrations. A simple procedure was proposed for characterization of the interaction of this inhibitor with the free enzyme, and with the enzyme-ATP and enzyme-peptide complexes. The second-order rate constants, calculated from the steady-state reaction kinetics, were used for this analysis to avoid the complications related to the complex catalytic mechanism of the protein kinase catalyzed reaction.  相似文献   

2.
To better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact. This "greasy" patch may lubricate the shearing motion associated with domain rotation, and the opening and closing of the active-site cleft. Although Apo appears to be quite dynamic, many important residues for MgATP binding and phosphoryl transfer in the active site are preformed. Residues around the adenine ring of ATP and residues involved in phosphoryl transfer from the large lobe are mostly preformed, whereas residues involved in ribose binding and in the Gly-rich loop are not. Prior to ligand binding, Lys72 and the C-terminal tail, two important ATP-binding elements are also disordered. The surface created in the active site is contoured to bind ATP, but not GTP, and appears to be held in place by a stable hydrophobic core, which includes helices C, E, and F, and beta strand 6. This core seems to provide a network for communicating from the active site, where nucleotide binds, to the peripheral peptide-binding F-to-G helix loop, exemplified by Phe239. Two potential lines of communication are the D helix and the F helix. The conserved Trp222-Phe238 network, which lies adjacent to the F-to-G helix loop, suggests that this network would exist in other protein kinases and may be a conserved means of communicating ATP binding from the active site to the distal peptide-binding ledge.  相似文献   

3.
We have examined phosphorylation of the rat liver glucocorticoid receptor (GR) and GR-associated protein kinase (PK) activity in the immunopurified receptor preparations. Affinity labeling of hepatic cytosol with [3H]dexamethasone 21-mesylate showed a covalent association of the steroid with a 94 kDa protein. GR was immunopurified with antireceptor monoclonal antibody BuGR2 (Gametchu & Harrison, Endocrinology 114: 274–279, 1984) to near homogeneity. A 23° C incubation of the immunoprecipitated protein A-Sepharose adsorbed GR with [-32P]ATP, Mg2+ and the catalytic subunit of cAMP-dependent PK (cAMP-PK) from bovine heart, led to an incorporation of radioactivity in the 94 kDa protein. Phosphorylation of GR was not evident in the absence of the added kinase. Of the radioinert nucleotides (ATP, GTP, UTP or CTP) tested, only ATP successfully competed with [-32P]ATP demonstrating a nucleotide specific requirement for the phosphorylation of GR. Other divalent cations, such as Mn2+ or Ca2+, could not be substituted for Mg2+ during the phosphorylation reaction. Phosphorylation of GR was sensitive to the presence of the protein kinase inhibitor, H-8, an isoquinoline sulfonamide derivative. In addition, the incorporation of radioactivity into GR was both time- and temperature-dependent. The phosphorylation of GR by cAMP-PK was independent of the presence of hsp-90 and transformation state of the receptor. The results of this study demonstrate that GR is an effective substrate for action of cAMP-PK and that the immunopurified protein A-Sepharose adsorbed GR lacks intrinsic kinase activity but can be conveniently used for the characterization of the phosphorylation reaction in the presence of an exogenous kinase.Abbreviations BUGR2 anti-GR monoclonal antibody - cAMP-PK cAMP-dependent protein kinase - DMSO dimethyl sulfoxide - EDTA ethylenediamine tetra acetic acid - GR glucocorticoid receptor - H-8 Isoquinoline sulfonamide derivative - hsp-90 90 kDa heat-shock protein - PMSF phenylmethylsulfonyl fluoride - PR progesterone receptor - NaF sodium fluoride - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - SR steroid receptor - TA triamcinolone acetonide  相似文献   

4.
5.
All eukaryotic protein kinases share a conserved catalytic core. In the catalytic (C) subunit of cAMP-dependent protein kinase (cAPK) this core is preceded by a myristylation motif followed by a long helix with Trp 30 at the end of this A-helix filling a hydrophobic cavity between the two lobes of the core. To understand the importance of the A-helix, the myristylation motif (delta 1-14) as well as the entire N-terminal segment (delta 1 -39) were deleted. In addition, Trp 30 was replaced with both Tyr and Ala. All proteins were overexpressed in E. coli and purified to homogeneity. rC(delta 1-14), rC(W30Y), and rC(W30A) all had reduced thermostability, but were catalytically indistinguishable from wild-type C. Based on Surface Plasmon Resonance, all three also formed stable holoenzyme complexes with the RI-subunit, although the appKds were reduced by more than 10-fold due to decrease in the association rate. Surprisingly, however, the holoenzymes were even more thermostable than wild-type holoenzyme. To obtain active enzyme, it was necessary to purify rC(delta 1-39) as a fusion protein with glutathione-S-transferase (GST-rC(delta 1-39), although its thermostability (Tm) was decreased by 12.5 degrees C, was catalytically similar to wild-type C and was inhibited by both the type I and II R-subunits and the heat-stable protein kinase inhibitor (PKI). The Tm for holoenzyme II formed with GST-rC(delta 1-39) was 16.5 degrees C greater than the Tm for free GST-rC(delta 1-39), and the Ka(cAMP) was increased nearly 10-fold. These mutants point out striking and unanticipated differences in how the RI and RII subunits associate with the C-subunit to form a stable holoenzyme and indicate, furthermore, that this N-terminal segment, far from the active site cleft, influences those interactions. The importance of the A-helix and Trp 30 for stability correlates with its location at the cleft interface where it orients the C-helix in the small lobe and the activation loop in the large so that these subdomains are aligned in a way that allows for correct configuration of residues at the active site. This extensive network of contacts that links the A-helix directly to the active site in cAPK is compared to other kinases whose crystal structures have been solved.  相似文献   

6.
It has been shown that cAMP-dependent phosphorylation of a soluble sperm protein is important for the initiation of flagellar motion. The suggestion has been made that this motility initiation protein, named axokinin, is the major 56,000-dalton phosphoprotein present in both dog sperm and in other cells containing axokinin-like activity. Since the regulatory subunit of a type II cAMP-dependent protein kinase is a ubiquitous cAMP-dependent phosphoprotein of similar subunit molecular weight as reported for axokinin, we have addressed the question of how many soluble 56,000-dalton cAMP-dependent phosphoproteins are present in mammalian sperm. We report that in bovine sperm cytosol, the ratio of the type I to type II cAMP-dependent protein kinase is approximately 1:1. The type II regulatory subunit is related to the non-neural form of the enzyme and undergoes a phosphorylation-dependent electrophoretic mobility shift. The apparent subunit molecular weights of the phospho and dephospho forms are 56,000 and 54,000 daltons, respectively. When bovine sperm cytosol or detergent extracts are phosphorylated in the presence of catalytic subunits, two major proteins are phosphorylated and have subunit molecular weights of 56,000 and 40,000 daltons. If, however, the type II regulatory subunit (RII) is quantitatively removed from these extracts using either immobilized cAMP or an anti-RII monoclonal affinity column, the ability to phosphorylate the 56,000- but not 40,000-dalton polypeptide is lost. These data suggest that the major 56,000 dalton cAMP-dependent phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase and not the motility initiator protein, axokinin.  相似文献   

7.
A highly conserved lysine in subdomain II is required for high catalytic activity among the protein kinases. This lysine interacts directly with ATP and mutation of this residue leads to a classical "kinase-dead" mutant. This study describes the biophysical and functional properties of a kinase-dead mutant of cAMP-dependent kinase where Lys72 was replaced with His. Although the mutant protein is less stable than the wild-type catalytic subunit, it is fully capable of binding ATP. The results highlight the effect of the mutation on stability and overall organization of the protein, especially the small lobe. Phosphorylation of the activation loop by a heterologous kinase, 3-phosphoinositide-dependent protein kinase-1 (PDK-1) also contributes dramatically to the global organization of the entire active site region. Deuterium-exchange mass spectrometry (DXMS) indicates a concerted stabilization of the entire active site following the addition of this single phosphate to the activation loop. Furthermore the mutant C-subunit is capable of binding both the type I and II regulatory subunits, but only after phosphorylation of the activation loop. This highlights the role of the large lobe as a scaffold for the regulatory subunits independent of catalytic competency and suggests that kinase dead members of the protein kinase superfamily may still have other important biological roles although they lack catalytic activity.  相似文献   

8.
The catalytic subunit of cAMP-dependent protein kinase has served as a paradigm for the entire kinase family. In the course of studying the structure-function relationship of the P+1 loop (Leu198-Leu205) of the kinase, we have solved the crystal structure of the Tyr204 to Ala mutant in complexes with Mg.ATP and an inhibitory peptide at 1.26A, with overall structure very similar to that of the wild-type protein. However, at the nucleotide binding site, ATP was found largely hydrolyzed, with the products ADP-PO(4) retained in the structure. High-resolution refinement suggests that 26% of the molecules contain the intact ATP, whereas 74% have the hydrolyzed products. The observation of the substrate and product states in the same structure adds significant information to our understanding of the phosphoryl transfer process. Structural examination of the mutation site substantiates and extends the emerging concept that the hydrophobic core in the large lobe of the kinase might serve as a stable platform for anchoring key segments involved in catalysis. We propose that Tyr204 is critical for anchoring the P+1 loop to the core. Further analysis has highlighted two major connections between the P+1 loop and the catalytic loop (Arg165-Asn171). One emphasizes the hydrophobic packing of Tyr204 and Leu167 mediated through residues from the alphaF-helix, recently recognized as a signal integration motif, which together with the alphaE-helix forms the center of the hydrophobic core network. The other connection is mediated by the hydrogen bond interaction between Thr201 and Asp166, in a substrate-dependent manner. We speculate that the latter interaction may be important for the kinase to sense the presence of substrate and prepare itself for the catalytic reaction. Thus, the P+1 loop is not merely involved in substrate binding; it mediates the communication between substrate and catalytic residues.  相似文献   

9.
Two isoforms of the regulatory subunit (R) of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), had been purified in our laboratory from two different tissues of the sea mussel Mytilus galloprovincialis. In this paper, we report the sequences of several peptides obtained from tryptic digestion of R(myt1). As a whole, these sequences showed high homology with regions of type I R subunits from invertebrate and also from mammalian sources, but homology with those of fungal and type II R subunits was much lower, which indicates that R(myt1) can be considered as a type I R isoform. This conclusion is also supported by the following biochemical properties: (1) R(myt1) was proved to have interchain disulfide bonds stabilizing its dimeric structure; (2) it failed to be phosphorylated by the catalytic (C) subunit purified from mussel; (3) it has a higher pI value than that of the R(myt2) isoform; and (4) it showed cross-reactivity with mammalian anti-RIbeta antibody.  相似文献   

10.
Ung MU  Lu B  McCammon JA 《Biopolymers》2006,81(6):428-439
The active site of the mammalian cAMP-dependent protein kinase catalytic subunit (C-subunit) has a cluster of nonconserved acidic residues-Glu127, Glu170, Glu203, Glu230, and Asp241-that are crucial for substrate recognition and binding. Studies have shown that the Glu230 to Gln mutant (E230Q) of the enzyme has physical properties similar to the wild-type enzyme and has decreased affinity for a short peptide substrate, Kemptide. However, recent experiments intended to crystallize ternary complex of the E230Q mutant with MgATP and protein kinase inhibitor (PKI) could only obtain crystals of the apo-enzyme of E230Q mutant. To deduce the possible mechanism that prevented ternary complex formation, we used the relaxed-complex method (Lin, J.-H., et al. J Am Chem Soc 2002, 24, 5632-5633) to study PKI binding to the E230Q mutant C-subunit. In the E230Q mutant, we observed local structural changes of the peptide binding site that correlated closely to the reduced PKI affinity. The structural changes occurred in the F-to-G helix loop and appeared to hinder PKI binding. Reduced electrostatic potential repulsion among Asp241 from the helix loop section and the other acidic residues in the peptide binding site appear to be responsible for the structural change.  相似文献   

11.
12.
The N-terminal sequence myr-Gly-Asn is conserved among the myristoylated cAPK (protein kinase A) catalytic subunit isozymes Calpha, Cbeta, and Cgamma. By capillary LC-MS and tandem MS, we show that, in approximately one third of the Calpha and Cbeta enzyme populations from cattle, pig, rabbit, and rat striated muscle, Asn 2 is deamidated to Asp 2. This deamidation accounts for the major isoelectric variants of the cAPK C-subunits formerly called CA and CB. Deamidation also includes characteristic isoaspartate isomeric peptides from Calpha and Cbeta. Asn 2 deamidation does not occur during C-subunit preparation and is absent in recombinant myristoylated Calpha (rCalpha) from Escherichia coli. Deamidation appears to be the exclusive pathway for introduction of an acidic residue adjacent to the myristoylated N-terminal glycine, verified by the myristoylation negative phenotype of an rCalpha(Asn 2 Asp) mutant. This is the first report thus far of a naturally occurring myr-Gly-Asp sequence. Asp 2 seems to be required for the well-characterized (auto)phosphorylation of the native enzyme at Ser 10. Our results suggest that the myristoylated N terminus of cAPK is a conserved site for deamidation in vivo. Comparable myr-Gly-Asn sequences are found in several signaling proteins. This may be especially significant in view of the recent knowledge that negative charges close to myristic acid in some proteins contribute to regulating their cellular localization.  相似文献   

13.
Liver post-mitochondrial supernatant from diabetic rats showed a decrease in the [3H] cAMP binding activity which was associated with a decrease in the number of cAMP binding sites. On the other hand, the cAMP binding activity of nuclear fractions from diabetic rat liver was not significantly different than that of control. The cAMP binding activity of post-mitochondrial supernatant was further analyzed by using 8-azido-[32P] cAMP, a photoaffinity probe for cAMP binding sites. The diabetic supernatants showed a selective reduction in the photolabeling of a protein band representing the regulatory subunit of type I cAMP-dependent protein kinase without any appreciable change in the photolabeling of regulatory subunit of type II cAMP-dependent protein kinase.  相似文献   

14.
Previous findings of reduced [3H]cAMP binding and increased activities of cAMP-dependent protein kinase (PKA) in discrete post-mortem brain regions from patients with bipolar affective disorder (BD) suggest that PKA, the major downstream target of cAMP, is also affected in this illness. As prolonged elevation of intracellular cAMP levels can modify PKA regulatory (R) and catalytic (C) subunit levels, we sought to determine whether these PKA abnormalities are related to changes in the abundance of PKA subunits in BD brain. Using immunoblotting techniques along with PKA subunit isoform-specific polyclonal antisera, levels of PKA RIalpha, RIbeta, RIIalpha, RIIbeta and Calpha subunits were measured in cytosolic and particulate fractions of temporal, frontal and parietal cortices of post-mortem brain from BD patients and matched, non-neurological, non-psychiatric controls. Immunoreactive levels of cytosolic Calpha in temporal and frontal cortices, as well as that of cytosolic RIIbeta in temporal cortex, were significantly higher in the BD compared with the matched control brains. These changes were independent of age, post-mortem interval or pH and unrelated to ante-mortem lithium treatment or suicide. These findings strengthen further the notion that the cAMP/PKA signaling system is up-regulated in discrete cerebral cortical regions in BD.  相似文献   

15.
Colletotrichum trifolii is a plant pathogenic fungus causing alfalfa anthracnose. Prepenetration development, including conidial germination and appressorial formation, are requisite for successful infection. Pharmacological data from our laboratory indicated a role for a cAMP-dependent protein kinase (PKA) pathway during these early morphogenic transitions. Thus, the cloning and characterization of the genes for PKA catalytic and regulatory subunits were undertaken to more precisely determine the function of PKA during C. trifolii pathogenic growth and development. In this report, the cloning, sequencing, and partial characterization of the gene encoding the regulatory subunit of cAMP-dependent protein kinase (Ct-PKAR) is described. An open reading frame of 1,212 bp containing 404 predicted amino acid residues was identified. Database analysis revealed that the deduced amino acid sequence of Ct-PKAR shares considerable similarity with that of PKA regulatory subunits in other organisms, particularly in the conserved regions. Furthermore, the Ct-PKAR protein is classified as a type II regulatory subunit based on the presence of the hallmark autophosphorylation site. Southern blot analysis indicated that Ct-PKAR is a single-copy gene. Northern blot analysis showed that the expression of Ct-PKAR is developmentally regulated. Ct-PKAR was shown to be a functional regulatory subunit of PKA by complementating the Neurospora crassa mcb mutant, which has a temperature-sensitive mutation in the regulatory subunit of PKA. Received: 26 August 1998 / Accepted: 30 December 1998  相似文献   

16.
17.
Summary Four mutants with amino acid substitution(s) at or near the putative phosphorylation site (Arg142 Arg143 Thr144 Ser145) of the regulatory subunit of cAMP-dependent protein kinase were obtained by site-directed mutagenesis. Three mutants, BCY1 Ala 145 (Ser145 to Ala), BCY1 His 143 (Arg143 to His) and BCY1 Asn 144, Ala 145 (Thr144 to Asn and Ser145 to Ala) complemented a bcy1 mutant, whereas BCY1 Gly 143 (Arg143 to Gly) did not. In addition, mutant, BCY1 Asn 144, Ala 145 exhibited a dominant coldsensitive phenotype, which can be most easily explained by the functional alteration of the regulatory subunit of cAMP-dependent protein kinase by the mutations. Analyses of these mutant genes revealed that phosphorylation of the regulatory subunit is not a prerequisite for the regulation of the cAMP-dependent protein kinase activity in responding to the cAMP level.  相似文献   

18.
Previous studies on the catalytic subunit of cAMP-dependent protein kinase (PKA) identified a conserved interaction pair comprised of Tyr204 from the P+1 loop and Glu230 at the end of the alphaF-helix. Single-point mutations of Tyr204 to Ala (Y204A) and Glu230 to Gln (E230Q) both resulted in alterations in enzymatic kinetics. To understand further the molecular basis for the altered kinetics and the structural role of each residue, we analyzed the Y204A and the E230Q mutants using hydrogen/deuterium (H/D) exchange coupled with mass spectrometry and other biophysical techniques. The fact that the mutants exhibit distinct molecular properties, supports previous hypotheses that these two residues, although in the same interaction node, contribute to the same enzymatic functions through different molecular pathways. The Tyr204 mutation appears to affect the dynamic properties, while the Glu230 mutation affects the surface electrostatic profile of the enzyme. Furthermore, H/D exchange analysis defines the dynamic allosteric range of Tyr204 to include the catalytic loop and three additional distant surface regions, which exhibit increased deuterium exchange in the Y204A but not the E230Q mutant. Interestingly, these are the exact regions that previously showed decreased deuterium exchange upon binding of the RIalpha regulatory subunit of PKA. We propose that these sites, coupled with the P+1 loop through Tyr204, represent one of the major allosteric networks in the kinase. This coupling provides a coordinated response for substrate binding and enzyme catalysis. H/D exchange analysis also further defines the stable core of the catalytic subunit to include the alphaE, alphaF and alphaH-helix. All these observations lead to an interesting new way to view the structural architecture and allosteric conformational regulation of the protein kinase molecule.  相似文献   

19.
Two isoforms of regulatory (R) subunit of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), were identified so far in the sea mussel Mytilus galloprovincialis. Out of them, only R(myt2) was phosphorylated in vitro by casein kinase 2 (CK2) using GTP as phosphate donor. CK2 catalytic subunit (CK2alpha) itself was sufficient to phosphorylate R(myt2), but phosphorylation was enhanced by the presence of the regulatory subunit CK2beta. Even in the absence of CK2, R(myt2) was phosphorylated to a certain extent when it was incubated with GTP. This basal phosphorylation was partially abolished by the known inhibitors apigenin and emodin, which suggests the presence of a residual amount of endogenous CK2 in the preparation of purified R subunit. CK2-mediated phosphorylation significantly decreases the ability of R(myt2) to inhibit PKA catalytic (C) subunit activity in the absence of cAMP. On the other hand, the sequence of several peptides obtained from the tryptic digestion of R(myt2) showed that mussel protein contains the signature sequence common to all PKA family members, within the "phosphate binding cassette" (PBC) A and B. Moreover, the degree of identity between the sequences of peptides from R(myt2), as a whole, and those from type II R subunits was 68-75%, but the global identity percentage with type I R subunits was only about 30%, so that R(myt2) can be classified as a type II R subunit.  相似文献   

20.
The mechanism by which the type Ialpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase is localized to cell membranes is unknown. To determine if structural modification of RIalpha is important for membrane association, both beef skeletal muscle cytosolic RI and beef heart membrane-associated RI were characterized by electrospray ionization mass spectrometry. Total sequence coverage was 98% for both the membrane-associated and cytosolic forms of RI after digestion with AspN protease or trypsin. Sequence data indicated that membrane-associated and cytosolic forms of RI were the same RIalpha gene product. A single RIalpha phosphorylation site was identified at Ser81 located near the autoinhibitory domain of both membrane-associated and cytosolic RIalpha. Because both R subunit preparations were 30-40% phosphorylated, this post-translational modification could not be responsible for the membrane compartmentation of the majority of RIalpha. Mass spectrometry also indicated that membrane-associated RIalpha had a higher extent of disulfide bond formation in the amino-terminal dimerization domain. No other structural differences between cytosolic and membrane-associated RIalpha were detected. Consistent with these data, masses of the intact proteins were identical by LCQ mass spectrometry. Lack of detectable structural differences between membrane-associated and cytosolic RIalpha strongly suggests an interaction between RIalpha and anchoring proteins or membrane lipids as more likely mechanisms for explaining RIalpha membrane association in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号