首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous research has shown that the Ca2+-dependent protease within platelets is activated when platelets aggregate, resulting in the production of three polypeptides (Mr = 200,000, 100,000, and 91,000). We have now shown that these three polypeptides arise from the hydrolysis of actin-binding protein. An antibody against actin-binding protein raised in rabbits was shown to be specific for actin-binding protein on immunoblots of total platelet proteins. This antibody reacted with additional polypeptides of Mr = 200,000, 100,000, and 91,000 on immunoblots of the proteins of thrombin-activated platelets. Actin-binding protein was purified from fresh, human platelet concentrate and hydrolyzed with platelet-derived Ca2+-dependent protease; hydrolysis resulted in the appearance of three polypeptides with molecular weights and isoelectric points identical to those of the three polypeptides generated within intact, aggregating platelets. Production of these polypeptides was inhibited by leupeptin and by the chelation of Ca2+. Hydrolysis of actin-binding protein was observed at micromolar Ca2+ concentrations, demonstrating that the level of Ca2+ in aggregated platelets is sufficient to account for the hydrolysis of actin-binding protein by the Ca2+-dependent protease. P235 was also purified and tested for its susceptibility to the protease. It was hydrolyzed by the Ca2+-dependent protease, and two polypeptides (Mr = 200,000 and 46,000) were produced. Antibodies against P235 raised in rabbits reacted only with P235 on immunoblots of total platelet proteins. These antibodies also reacted with polypeptides of Mr = 200,000 and 46,000 on immunoblots of thrombin-activated platelets. These data show that both actin-binding protein and P235 are cleaved during thrombin-induced platelet aggregation and suggest that the activation of the Ca2+-dependent protease may permit reorganization of the platelet cytoskeleton in aggregating platelets.  相似文献   

2.
Monoclonal antibodies were isolated from mice immunized with variant surface glycoprotein of Trypanosoma congolense. Five out of the six monoclonals were able to detect epitopes at the cell surface in an indirect immunofluorescence analysis. One antibody did not react. Using protein-A-containing bacterial adsorbent all monoclonal antibodies precipitate glycosylated as well as non-glycosylated variant surface glycoprotein. Carbohydrate chains therefore do not appear to be part of the immunodeterminant structure recognized by the various monoclonal antibodies. Interaction of the monoclonal antibodies with protein fragments obtained by partial proteolysis with V8 protease from Staphylococcus aureus or papain allows the classification of the antibodies into three groups with different epitope specificity.  相似文献   

3.
Specific monoclonal antibodies against the active sites of two genetically engineered pancreatic secretory trypsin inhibitor (PSTI) variants (PSTI 0 and PSTI 4) were produced. The protease inhibitors PSTI 0 and PSTI 4 differ only by three amino acid substitution at their active sites. PSTI 0 inhibits trypsin, whereas PSTI 4 inhibits human granulocyte elastase and chymotrypsin. Immunization was performed in vitro with a synthetic heptapeptide that covers the mutated region of the protein. For this purpose in vitro culture conditions for the production of specific monoclonal antibodies against synthetic peptides were improved. The monoclonal antibodies obtained react specifically with the corresponding protease inhibitor variant. Competition experiments with trypsin and human elastase demonstrate that the protease displace the monoclonal antibody from the active site of PSTI 0 and PSTI 4 respectively.  相似文献   

4.
Fish powders and fish protein hydrolysates (FPH) from sardinella (Sardinella aurita) were prepared and tested as growth media for alkaline protease production by Pseudomonas aeruginosa MN7. Cultivated in fish substrate as carbon source, the strain exhibited a slightly greater protease production (about 7800 U ml–1) than that obtained with commercial peptones (about 7222 U ml–1). Furthermore, P. aeruginosa MN7 produced the same amount of protease when cultivated in medium containing only fish substrate or that containing all ingredients, indicating that the strain can obtain its carbon and nitrogen requirements directly from whole fish proteins. Moreover, it was found that extensive hydrolysis of fish proteins did not increase protease formation. Protease production in media containing only FPH prepared by Alcalase was about 70% of those obtained with MN7 protease digest of fish protein or with meat-fish powder. These results indicate that sardinella substrates are an excellent carbon and nitrogen source for the growth of P. aeruginosa MN7 and the production of protease.  相似文献   

5.
The protease from Bacillus licheniformis, commercially known as Alcalase®, was insolubilized and stabilized by immobilization onto activated chitosan. Activation with different agents, such as glutaraldehyde (GLU-Chi), glyoxyl (GLY-Chi) and divinyl sulfone (DVS-Chi) was investigated. The effect of the immobilization protocol, for instance different pH and times, were also evaluated. GLU-Chi showed the highest activity (35.6UNPA/g) with the smallest substrate (N-Boc-l-alanine p-nitrophenyl-ester, NPA), while GLY-Chi showed the highest activity (1.5 UAzocasein/g) using the greatest substrate (azocasein). A 24-h immobilization period was enough to stabilize the enzyme using the three supports under almost all conditions. Operational stability in azocasein hydrolysis was assayed and GLU-Chi showed no activity loss during 5 cycles. DVS-Chi retained around 70 % of its initial activity after the fifth cycle, whereas GLY-Chi activity retained only 10 %. Finally, the biocatalysts were used in the hydrolysis of tilapia skin gelatin aiming the production of peptides with antioxidant activity. The protein hydrolysates obtained using GLU-Chi presented the highest antioxidant activity (36.7 μM Trolox Eq). However, the best results of operational stability were obtained using DVS-Chi, which did not lose its initial activity after 3 consecutive cycles of gelatin hydrolysis.  相似文献   

6.
To study the mechanism of degradation of glucagon with purified insulin-glucagon protease, glucagon was reacted with the enzyme at various times of incubation. The proteolysis was followed by the production of flourescamine-reacting material as well as reaction with dansyl chloride, cleavage by acid hydrolysis, and identification by thin layer chromatography. For quantitative measurement of the degradation products, [14C] dansyl derivatives were produced, identified by autoradiography, and counted. In the degradation products in addition to histidine, the dansyl derivatives of tyrosine, phenylalanine, two leucines, alanine and lysine were identified. For comparison, glucagon was also reacted with chymotrypsin and the degradation products consisted of threonine, serine, two leucines and valine. Thus, insulin-glucagon protease degrades glucagon in a manner distinct from that of chymotrypsin.  相似文献   

7.
Optimization of the process of enzymatic hydrolysis of keratin-containing stock aimed at obtaining hydrolysates of high biological value has been performed. The increasing of the stock/water weight ratio, the amount of the alkaline protease preparation from Acremonium chrysogenium added and the temperature of the reaction mixture resulted in an increase in the yield and antioxidant capacity of hydrolysis products. The molecular masses of soluble products obtained under optimal hydrolysis conditions ranged from 3.55 to 3.60 kDa. High antioxidant capacity, 100% bioavailability and a well-balanced amino acid composition was characteristic of the hydrolysis products.  相似文献   

8.
9.
The effect of the three forms (CANP1, CANP2 & CANP3) of calf brain calcium activated neutral protease (CANP) on the hydrolysis of purified neurofilament triplet proteins was investigated. It was observed that: each of the purified neurofilament proteins, was hydrolyzed slowly by CANP2 whereas the hydrolysis of 150 KDa and 68 kDa proteins by CANP1 & CANP3 was rapid; when assembled neurofilaments were used as a substrate, again differences in the rate and extent of degradation of the triplet proteins by the three proteases were observed. For example, little cleavage of the 68 kDa protein by CANP2 and CANP3 was noted whereas 210 kDa and 150 kDa proteins remained largely intact. CANP1 degraded the 150 kDa and 68 kDa proteins more rapidly than 210 kDa protein, where only a slight effect was noted. These data provide further proof of the existence of three different forms of CANP in the brain, and indications of the resistance of 210 kDa protein to proteolysis which may be compatible with its proposed special role in crossbridge formation.  相似文献   

10.
Jennings LD  Lun DS  Médard M  Licht S 《Biochemistry》2008,47(44):11536-11546
ATP-dependent proteases are processive, meaning that they degrade full-length proteins into small peptide products without releasing large intermediates along the reaction pathway. In the case of the bacterial ATP-dependent protease ClpAP, ATP hydrolysis by the ClpA component has been proposed to be required for processive proteolysis of full-length protein substrates. We present here data showing that in the absence of the ATPase subunit ClpA, the protease subunit ClpP can degrade full-length protein substrates processively, albeit at a greatly reduced rate. Moreover, the size distribution of peptide products from a ClpP-catalyzed digest is remarkably similar to the size distribution of products from a ClpAP-catalyzed digest. The ClpAP- and ClpP-generated peptide product size distributions are fitted well by a sum of multiple underlying Gaussian peaks with means at integral multiples of approximately 900 Da (7-8 amino acids). Our results are consistent with a mechanism in which ClpP controls product sizes by alternating between translocation in steps of 7-8 (+/-2-3) amino acid residues and proteolysis. On the structural and molecular level, the step size may be controlled by the spacing between the ClpP active sites, and processivity may be achieved by coupling peptide bond hydrolysis to the binding and release of substrate and products in the protease chamber.  相似文献   

11.
A crucial enzyme in the pathway for protein degradation in Escherichia coli is protease La, an ATP-hydrolyzing protease encoded by the lon gene. This enzyme degrades various proteins to small polypeptides containing 10-20 amino acid residues. To learn more about its energy requirement, we determined the number of ATP molecules hydrolyzed by the purified protease for each peptide bond cleaved. The enzyme hydrolyzed about 2 molecules of ATP for each new amino group generated with casein, bovine serum albumin, glucagon, or guanidinated casein as substrates, even though these proteins differ up to 20-fold in size and 3-4 fold in rates of hydrolysis of peptide bonds. Similar values for the stoichiometry (from 1.9 to 2.4) were obtained using fluorescamine or 2,4,6-trinitrobenzene sulfonic acid to estimate the appearance of new amino groups. These values appeared lower at 1 mM than at 10 mM Mg2+. The coupling between ATP and peptide bond hydrolysis appeared very tight. However, when the protease was assayed under suboptimal conditions (e.g. at lower pH or with ADP present), many more ATP molecules (from 3.5 to 12) were consumed per peptide bond cleaved. Our data would indicate that the early steps in protein degradation consume almost as much energy (2 ATPs for each cleavage) as does the formation of peptide bonds during protein synthesis.  相似文献   

12.
Kinetic parameters of hydrolysis of peptide and protein substrates by psychrophilic endopeptidases from hepatopancreas of the king crab Paralithodes camtschaticus (PC), in particular, by trypsin, collagenolytic protease, and metalloprotease, were measured at different temperatures. The PC trypsin was shown to hydrolyze Bz-Arg-pNA in the temperature range studied (4–37°C) 19 times more effectively than bovine trypsin. The rate constants of hydrolysis of Glp-Ala-Ala-Leu-pNA by the PC collagenolytic protease increased approximately by one order of magnitude along with temperature decrease, while K m decreased by 3.5 times. The effective values of K m for the hydrolysis of azocasein by the metalloprotease insignificantly depend on temperature. We proposed that electrostatic interactions of negative charges around the cavity of active site are critical for the effective hydrolysis of substrates by endopeptidases of the PC hepatopancreas.  相似文献   

13.
The initiation factor eIF4G plays a central role in the regulation of translation. In picornaviruses, as well as in human immunodeficiency virus type 1 (HIV-1), cleavage of eIF4G by the viral protease leads to inhibition of protein synthesis directed by capped cellular mRNAs. In the present work, cleavage of both eIF4GI and eIF4GII has been analyzed by employing the proteases encoded within the genomes of several members of the family Retroviridae, e.g., Moloney murine leukemia virus (MoMLV), mouse mammary tumor virus, human T-cell leukemia virus type 1, HIV-2, and simian immunodeficiency virus. All of the retroviral proteases examined were able to cleave the initiation factor eIF4GI both in intact cells and in cell-free systems, albeit with different efficiencies. The eIF4GI hydrolysis patterns obtained with HIV-1 and HIV-2 proteases were very similar to each other but rather different from those obtained with MoMLV protease. Both eIF4GI and eIF4GII were cleaved very efficiently by the MoMLV protease. However, eIF4GII was a poor substrate for HIV proteases. Proteolytic cleavage of eIF4G led to a profound inhibition of cap-dependent translation, while protein synthesis driven by mRNAs containing internal ribosome entry site elements remained unaffected or was even stimulated in transfected cells.  相似文献   

14.
Methods that allow for the manipulation of genes or their products have been highly fruitful for biomedical research. Here, we describe a method that allows the control of protein abundance by a genetically encoded regulatory system. We developed a dormant N‐degron that can be attached to the N‐terminus of a protein of interest. Upon expression of a site‐specific protease, the dormant N‐degron becomes deprotected. The N‐degron then targets itself and the attached protein for rapid proteasomal degradation through the N‐end rule pathway. We use an optimized tobacco etch virus (TEV) protease variant combined with selective target binding to achieve complete and rapid deprotection of the N‐degron‐tagged proteins. This method, termed TEV protease induced protein inactivation (TIPI) of TIPI‐degron (TDeg) modified target proteins is fast, reversible, and applicable to a broad range of proteins. TIPI of yeast proteins essential for vegetative growth causes phenotypes that are close to deletion mutants. The features of the TIPI system make it a versatile tool to study protein function in eukaryotes and to create new modules for synthetic or systems biology.  相似文献   

15.
The ability of rat leukocytes to hydrolyze a radiolabeled, surface-bound protein substrate in a solid phase assay was determined, and various factors that influence the process were measured. Unstimulated leukocytes hydrolyzed very little substrate. When the cell suspension was mixed with zymosan particles or incubated with preformed immune complexes, the amount of substrate hydrolysis increased dramatically. Not surprisingly, immune complexes at equivalence proved to be the most effective in eliciting the response. Immune complexes attached to the surface along with the protein substrate were able to effectively induce hydrolysis, though they were not as effective as immune complexes in suspension. Three protease inhibitors, alpha 1-antitrypsin, alpha 2-macroglobulin, and soybean trypsin inhibitor, which were able to neutralize nearly all of the protease activity in rat neutrophil lysates, were tested for their ability to inhibit immune complex-induced protein hydrolysis. It was found that when the inhibitors were surface bound along with the substrate protein, they were effective in preventing the neutrophils from hydrolyzing the protein. However, when the same inhibitors were present in the fluid phase, they were much less effective. The relative ineffectiveness of fluid phase protease inhibitors to block the protease activity of contact-activated leukocytes may explain how immune complex injury can take place in the presence of high concentrations of serum inhibitors.  相似文献   

16.
Induced mutagenesis with γ-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366 D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheniformis-145. Samples of dry concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was established. Alkaline serine protease subtilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolicheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited proteolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5–11) and temperature (30–70°C). Efficient hydrolysis of extruded soybean meal protein at high concentrations (20 to 50%) in the reaction mixture was the main advantage of the Protolicheterm-145 preparation. Compared to the preparation obtained using the initial strain, the new preparation with increased proteolytic activity provided for more complete hydrolysis of the main non-nutritious anti-nutritional soy proteins (glycinin and β-conglycinin) with the yield of soluble protein increased by 19–28%, which decreased the cost of bioconversion of the proteinaceous material and indicated promise of the new preparation in resource-saving technologies for processing soybean meals and cakes.  相似文献   

17.
A comparative study of soybean and rapeseed protein hydrolysis by protosubtilin, an original Russian enzyme preparation widely used in animal feed production, has been performed. SDS-PAG electrophoresis, HPLC, and mass spectrometry have been employed to analyze the obtained products. The soybean protein isolate used for hydrolysate production was obtained from a commercial supplier, and rapeseed proteins were prepared from the meal by alkali extraction. Low molecular weight impurities were removed by ultrafiltration. The degree of protein hydrolysis has been shown to depend on the substrate-to-enzyme preparation ratio, hydrolysis time, and protein concentration. Rapeseed protein hydrolysis by protosubtilin at an enzyme/protein ratio of 1: 20 and hydrolysis time of 20 h resulted in complete cleavage of the proteins present in the raw material and the accumulation of oligopeptides (molecular weight less than 14 kDa) and free amino acids, which accounted for 53 and 8% of the initial protein weight, respectively. In contrast to rapeseed proteins, soybean proteins showed considerable gelling at the initial stages of hydrolysis, and the formation of insoluble hydrolysis-resistant fragments was observed. The soluble part of the hydrolysate contained short oligopeptides and free amino acids, which accounted for 13% of the initial protein weight only.  相似文献   

18.
Hydrolysis of milk proteins by lactic acid bacteria leads to the formation of a large number of peptides. In this work, the hydrolysis of β-casein by the protease PrtPI of Lactococcus lactis was studied. Experiments were carried out at different initial enzyme/substrate ratios. Identification and quantification of peptides were performed by MS and RP-UHPLC analyses. Nine low molecular weight (LMW) peptides were quantified absolutely. Additionally, semi-quantification of six high molecular weight peptides (HMW) was provided. To describe the dynamics of peptides concentrations, an aggregated model was developed. This model links peptide formation to the breakdown of intact protein by introducing the concept of virtual intermediate peptides (VIP). The model represented the experimental data with an average error of 14% (comparable with the experimental error). By using the model, three dynamic pools of peptides were identified. The model suggests that LMW peptides have similar dynamic characteristics as their counterpart HMW peptides in the β-casein sequence. This study indicates that the presence and structure of micelles affect the hydrolysis dynamics and that, for some peptides, the enzyme/substrate ratio appears to affect the hydrolysis stoichiometry. The model developed is parsimonious and has a basic mechanistic component. It allows for a rational study of protein hydrolysis.  相似文献   

19.
20.
牦牛骨蛋白的酶解条件研究   总被引:2,自引:0,他引:2  
以蛋白质水解度为评价指标,辅以固形物溶出率,比较了中性蛋白酶、菠萝蛋白酶和木瓜蛋白酶对牦牛骨蛋白的水解效果,研究了酶用量、料液比(底物浓度)、酶解时间对水解度的影响,采用正交试验对酶解条件进行了优化。结果显示,木瓜蛋白酶是牦牛骨蛋白水解的适宜催化剂。在一定条件下,样品水解度随酶用量和酶解时间的增加而增大,底物浓度过低或过高均不利于原料中蛋白质的酶解。木瓜蛋白酶水解牦牛骨蛋白最佳条件为:酶解温度60℃,酶解时间8 h,酶用量3500 U/g蛋白质,料液比1:25(g:m l)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号