首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acyrthosiphon pisum was a more efficient vector than Myzus persicae of bean leaf roll virus (BLRV), but the two species transmitted pea enation mosaic virus (PEMV) equally well and much more often than Megoura viciae. M. viciae did not transmit BLRV, and Aphis fabae did not transmit BLRV or PEMV. BLRV and PEMV were transmitted more often by nymphs of A. pisum than by adult apterae or alatae that fed on infected plants only as adults, but both viruses were readily transmitted by adults that had developed on infected plants. The shortest time in which nymphs acquired BLRV was 2 h, and 50 % transmitted after an acquisition period of 4 days. Some nymphs acquired PEMV in 30 min and 50% in 8 h. The shortest time for inoculation of BLRV by adults was 15 min, but some transmitted PEMV in probes lasting less than 1 min. The median latent periods of BLRV and PEMV in aphids fed for 12 h on infected plants were, respectively, 105 and 44 h. Clones of A. pisum differed in their ability to transmit BLRV and PEMV, and efficiency in transmitting the two viruses seemed to be unrelated. Some aphids that fed successively on plants infected with each virus transmitted both viruses, and infectivity with one virus did not seem to affect transmission of the other.  相似文献   

2.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

3.
Preparations were made from chervil plants doubly infected with carrot mottle virus (CMotV) and its helper virus, carrot red leaf (CRLV), on which it depends for transmission by the aphid Cavariella aegopodii, by the procedure developed previously for CRLV. The preparations contained 25 nm isometric particles which were indistinguishable from those of CRLV but possessed aphid-transmissible infectivity of both viruses and manually transmissible infectivity of CMotV. Only one sedimenting and buoyant density component was detected. The manually transmissible CMotV infectivity was resistant to freezing and to organic solvents, treatments that destroyed the CMotV infectivity in extracts from singly infected plants. The aphid-transmissible CMotV infectivity in preparations from CRLV/ CMotV-infected plants, and that in extracts from CRLV/CMotV-carrying C. aegopodii, was abolished by treatment with CRLV antiserum but not with normal serum. These results show that transmission of CMotV by C. aegopodii is dependent on the packaging of its RNA in coats composed partially or entirely of CRLV particle protein. The aphid Myzus persicae does not transmit CRLV or CMotV from plants mixedly or singly infected with these viruses but it is a vector of beet western yellows virus (BWYV) and potato leafroll virus (PLRV) and it transmitted CMotV from plants that also contained either of these viruses. This suggests that the coat proteins of BWYV and PLRV can substitute for that of CRLV in packaging CMotV nucleic acid and thereby confer on it their own vector specificities.  相似文献   

4.
Bean leaf roll virus (BLRV) and pea enation mosaic virus (PEMV) were each transmitted by Acyrthosiphon pisum (Harris) to fifteen of thirty species of legumes in the glasshouse; eleven species were susceptible to both viruses. The only biennial or perennial species infected by BLRV were hop trefoil (Medicago lupulina L.), lucerne (M. sativa L.) and red clover (Trifolium pratense L.), but naturally infected sainfoin (Onobrychis viciifolia Scop.) and white clover (T. repens L.) were found. The only perennial species infected with PEMV in the glasshouse was kidney vetch (Anthyllis vulneraria L.). Eggs of A. pisum, which seems to be the main vector of BLRV and PEMV in England, were found in winter on several species of cultivated perennial legumes, most on lucerne, fewest on white clover. In spring, more viviparae of A. pisum were found on lucerne than on other perennial legumes, and many on lucerne, but few on red or white clover, were infective with BLRV. Lucerne is probably the main overwintering source of BLRV in areas where lucerne is common, but elsewhere red and white clovers are probably as important. No aphid collected from perennial legumes between 1965 and 1968 was infective with PEMV, but this virus can overwinter in common vetch (Vicia sativa L.). Lucerne infected with BLRV was usually symptomless or showed only transient mild yellowing of young leaves. Lucerne plants showing vein-yellowing, similar to that previously reported as a symptom of BLRV, were possibly infected with an aberrant strain of BLRV but more probably with BLRV and another aphid-transmitted agent. Inoculations from lucerne with vein-yellowing symptoms sometimes caused vein-yellowing, and sometimes typical BLRV-symptoms, in crimson clover (Trifolium incarnatum L.).  相似文献   

5.
Carrot mottle virus (CMotV) and its helper virus, carrot red leaf (CRLV), were not transmitted by aphids (Cavariella aegopodii) that had fed through membranes on, or had been injected with, sap from mixedly infected chervil plants or partially purified preparations of CMotV. However, the viruses were transmitted by recipient aphids injected with haemolymph from donor aphids that had fed on mixedly infected plants but not by a second series of recipients injected with haemolymph from the first series. Some of the first series of recipients transmitted both viruses for up to 11 days but others transmitted erratically and many lost ability to transmit after a few days. The results confirm that both viruses are circulative but provide no evidence for multiplication in the vector. Non-viruliferous aphids, or aphids that had acquired CRLV by feeding, did not transmit CMotV when they were injected with haemolymph from aphids that had fed on a source of CMotV alone, confirming that they can only transmit CMotV when they acquire it from a mixedly infected plant. When extracts from donor aphids were treated with ether before injection, recipient aphids transmitted both CRLV and CMotV, although the infectivity of CMotV grown in Nicotiana clevelandii in the absence of CRLV is destroyed by ether treatment. CMotV particles acquired by aphids from mixedly infected plants therefore differed in some way from those in singly infected plants. A plausible explanation of these results, and of the dependence of CMotV on CRLV for aphid transmission, is that doubly infected plants contain some particles that consist of CMotV nucleic acid coated with CRLV protein.  相似文献   

6.
Mixed infections with two or three viruses - bean leaf roll (BLRV), pea early-browning (PEBV) and pea enation mosaic (PEMV) - were detected in plants showing leaf curling, stunting and necrosis in a crop of field beans grown for seed in 1980. In glasshouse tests, field bean plants infected with any one of these viruses showed no necrosis, and plants infected with PEBV and PEMV together showed symptoms of PEMV only. However, mixed infection with BLRV and PEMV almost invariably induced severe stunting and leaf necrosis, and infection with BLRV and PEBV often induced both leaf and stem necrosis and sometimes caused early death. Thus it seems that the necrotic symptoms seen in the field were induced by interactions between BLRV and the other viruses. No transmission of PEBV was detected through seed harvested from the crop, but up to 5% transmission was detected through seed from experimentally-infected plants. The infected seedlings were symptomless.  相似文献   

7.
Transmission of parsnip yellow fleck virus (PYFV) by the aphid Cavariella aegopodii occurs only when the aphids are also carrying the helper virus, anthriscus yellows (AYV). None of five other viruses tested was able to act as helper. In experiments in which aphids were allowed to feed through membranes on crude or treated extracts from infected plants, aphids already carrying AYV acquired PYFV, but virus-free aphids failed to acquire either AYV or PYFV. PYFV was not transmitted by insects injected with haemolymph from aphids carrying both viruses, or with purified preparations of PYFV. PYFV was transmitted when AYV-carrying aphids, except those whose stylets had been removed, were contaminated externally with PYFV preparations. Ultraviolet irradiation of infected leaves did not prevent aphids from acquiring AYV, presumably because it is confined to deeply-lying tissues. AYV-carrying aphids could acquire PYFV from u.v.-irradiated leaves after acquisition access times of 2 h but not after feeds of only 2 or 15 min (which are adequate on unirradiated leaves), suggesting that PYFV is present in all parts of the leaf. No ‘helper agent’ distinct from AYV itself was detected in these experiments or in experiments on minimum acquisition feeding time or maximum period of persistence in the aphid. U.v.-inactivated PYFV competed with infective PYFV for retention sites in AYV-carrying aphids, whereas AYV apparently did not. It is suggested that there is no helper agent for PYFV, other than AYV particles. The possibility that there is one for AYV is not excluded.  相似文献   

8.
Myzus persicae transmitted soybean mosaic virus (SMV) most efficiently following 30 or 60 s acquisition probes on infected plants. There were no differences in susceptibility to SMV infection of soybean plants 1 to 12 wk old, but symptoms were more severe in plants inoculated when young than when old. Soybeans inoculated between developmental stages R3 and R6 only showed yellowish-brown blotching on one or more leaves. There were no observable differences in the time of appearance or type of symptoms shown by soybean seedlings inoculated either by sap or by aphids; infected plants became acquisition hosts for aphids 5–6 days after inoculation. There was no change in the efficiency with which M. persicae transmitted SMV from source plants up to 18 wk after inoculation. M. persicae transmitted SMV from leaves of field-grown soybeans when plants were inoculated at developmental stages V6, R2, and R3 and tested as sources 57–74 days after inoculation but not from plants inoculated at R5 and tested as sources 14 to 32 days after inoculation. M. persicae acquired SMV from soybean buds, flowers, green bean pods, and unifoliolate, trifoliolate, and senescent leaves. Middle-aged and deformed leaves were better sources of the virus than buds, unfolding and old symptomless leaves. The results are being incorporated into a computer model of SMV epidemiology.  相似文献   

9.
Enzyme-linked immunosorbent assay (ELISA) was adapted for the efficient detection and assay of potato leafroll virus (PLRV) in aphids. Best results were obtained when aphids were extracted in 0.05 M phosphate buffer, pH 7.0, and the extracts incubated at 37 °C for 1 h before starting the assay. Using batches of 20 green peach aphids (Myzus persicae), about 0.01 ng PLRV/aphid could be detected. The virus could also be detected in single aphids allowed a 1-day acquisition access period on infected potato leaves. The PLRV content of aphids depended on the age of potato source-plants and the position of source leaves on them. It increased with increase in acquisition access period up to 7 days but differed considerably between individual aphids. A maximum of 7 ng PLRV/aphid was recorded but aphids more usually accumulated about 0.2 ng PLRV per day. When aphids were allowed acquisition access periods of 1–3 days, and then caged singly on Physalis floridana seedlings for 3 days, the PLRV content of each aphid, measured subsequently, was not strongly correlated with the infection of P. floridana. The concentration of PLRV in leaf extracts differed only slightly when potato plants were kept at 15, 20, 25 or 30 °C for 1 or 2 wk, but the virus content of aphids kept on leaves at the different temperatures decreased with increase of temperature. PLRV was transmitted readily to P. floridana at all temperatures, but by a slightly smaller proportion of aphids, and after a longer latent period, at 15 °C than at 30 °C. The PLRV content of M. persicae fed on infected potato leaves decreased with increasing time after transfer to turnip (immune to PLRV). The decrease occurred in two phases, the first rapid and the second very slow. In the first phase the decrease was faster, briefer and greater at 25 and 30 °C than at 15 and 20 °C. No evidence was obtained that PLRV multiplies in M. persicae. These results are compatible with a model in which much of the PLRV in aphids during the second phase is in the haemocoele, and transmission is mainly limited by the rate of passage of virus particles from haemolymph to saliva. The potato aphid, Macrosiphum euphorbiae, transmitted PLRV much less efficiently than M. persicae. Its inefficiency as a vector could not be ascribed to failure to acquire or retain PLRV, or to the degradation of virus particles in the aphid. Probably only few PLRV particles pass from the haemolymph to saliva in this species. The virus content of M. euphorbiae collected from PLRV-infected potato plants in the field increased from early June to early July, and then decreased. PLRV was detected both in spring migrants collected from the plants and in summer migrants caught in yellow water-traps. PLRV was also detected in M. persicae collected from infected plants in July and August, and in trapped summer migrants, but their PLRV content was less than that of M. euphorbiae, and in some instances was too small for unequivocal detection.  相似文献   

10.
Hodge S  Powell G 《Oecologia》2008,157(3):387-397
Plant viruses modify the development of their aphid vectors by inducing physiological changes in the shared host plant. The performance of hymenopterous parasitoids exploiting these aphids can also be modified by the presence of the plant pathogen. We used laboratory and glasshouse microcosms containing beans (Vicia faba) as the host plant to examine the interactions between a plant virus (pea enation mosaic virus; PEMV) and a hymenopterous parasitoid (Aphidius ervi) that share the aphid vector/host Acyrthosiphon pisum. Neither PEMV-infection of V. faba, nor the carriage of PEMV virions by A. pisum, affected the growth or morphology of the aphid, or the oviposition behaviour and development of A. ervi. The presence of developing Aphidius ervi larvae within Acyrthosiphon pisum did not affect the ability of the aphids to transmit PEMV. However, by reducing their longevity, parasitism ultimately decreased the time viruliferous aphids were able to inoculate plants. In terms of virus dispersal, parasitized aphids exhibited more movement around experimental arenas than unparasitized controls, causing a slight increase in the proportion of beans infected with PEMV. Exposure to adult Aphidius ervi caused Acyrthosiphon pisum to rapidly drop off bean plants and disperse to new hosts, resulting in considerably higher plant infection rates (70%) than that seen in control arenas (25%). The results of this investigation demonstrate that when parasitoids are added to a plant-pathogen-vector system, benefits to the host plant due to reduced herbivore infestation must be balanced against the consequences of parasitoid-induced aphid dispersal and a subsequent increase in the level of plant infection.  相似文献   

11.
An antigen‐coated plate enzyme‐linked immunosorbent assay (ACP‐ELISA) method was developed and validated for the detection of Bean leafroll virus (BLRV) and Pea enation mosaic virus (PEMV), two of the important viral pathogens of several legume crops. The coat protein (CP) gene of each of the viruses was bacterially expressed as a fusion protein containing an N‐terminal hexa‐histidine tag and used as an antigen to produce antisera in rabbits. The antiserum to BLRV could detect the virus in leaf samples in up to 1:1000 dilution, and the PEMV antiserum detected the homologous virus in leaf samples of dilutions up to 1:6400. No serological cross‐reactivity was observed between anti‐BLRV and anti‐PEMV sera. The ACP‐ELISA assays were then used for estimating the prevalence of these two viruses in alfalfa, pea and vetch over a three‐state area in the US Pacific Northwest over a 2‐year period and virus incidence was mapped. Availability of rapid and sensitive ELISA assays facilitate virus disease mapping efforts and screening germplasm for virus resistance.  相似文献   

12.
Mixed infections of Nicotiana benthamiana plants by Tobacco necrosis virus (TNV) and Turnip crinkle virus (TCV) exhibited an interference interaction. Accumulation of TNV (+)RNA as well as capsid protein in mixed infection were considerably lower than that of singly infected plants. There were also a slight reduction in the levels of TCV (+)RNA and capsid protein in doubly infected plants, which displayed the concentration of both viruses decreased in dually infected plants. Tissue immunoblot analysis of systemic N. benthamiana leaves infected by TNV and TCV singly or doubly showed the interference between the two viruses in situ, which exhibited the decrease of both viruses in doubly infected leaves although the distribution of them did not change remarkably. These results were consistent with the hybridization analysis of viral genomic RNA and coat protein. Both cross‐protection test and mixed infection of the two viruses confirmed TCV had relatively stronger interference to the infection of TNV. Interference infection by TNV and TCV induced higher increase in the levels of cytochrome pathway respiration and alternative pathway respiration in host plants, especially the latter. Interference often occurred in different strains of one kind of virus or two different closely related viruses in one genus. Our results showed that interference could also occur in different viruses belonging to different genera.  相似文献   

13.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

14.
Groundnut (Arachis hypogaea) plants from Nigeria with chlorotic rosette disease contained a manually transmissible virus, considered to be a strain of groundnut rosette virus (GRV(C)). GRV(C) infected nine out of 32 species in three out of nine families. It caused local lesions without systemic infection in Chenopodium amaranticolor, C. murale and C. quinoa, and systemic symptoms in Glycine max, Nicotiana benthamiana, N. clevelandii and Phaseolus vulgaris as well as in groundnut. Some ‘rosette-resistant’ groundnut lines were also infected. GRV(C) was transmitted by Aphis craccivora, but only from groundnut plants that were also infected with an aphid-transmissible second virus, which was not manually transmissible and was considered to be groundnut rosette assistor virus (GRAV). Plants infected with GRAV contained isometric particles c. 25 nm in diameter which were detectable by immunosorbent electron microscopy on grids coated with antisera to several luteoviruses, especially with antisera to bean leaf roll, potato leafroll and beet western yellows viruses. No virus-like particles were observed in extracts from plants infected with GRV(C) alone. A single groundnut plant obtained from Nigeria with symptoms of green rosette contained luteovirus particles, presumed to be of GRAV, and yielded a manually transmissible virus that induced symptoms similar to those of GRV(C) in C. amaranticolor but gave only mild or symptomless infection of N. benthamiana and N. clevelandii. It was considered to be a strain of GRV and designated GRV(G).  相似文献   

15.
Systemic movement of Bean leafroll virus (BLRV) in susceptible and resistant lentil and faba bean genotypes was studied using plants grown in a plastic house. All the plants studied were inoculated with BLRV by viruliferous pea aphids (Acyrthosiphon pisum). Five plants/genotype of lentil and faba bean were harvested, respectively, at 3, 6, 9, 12 and 18 days and 1, 2, 3, 4 and 5 weeks after inoculation. Each plant was split into growing point, stem, stem base and root, and each was tested using tissue blot immunoassays (TBIA). Virus concentration in each section was estimated using a 0–3 score and a relative TBIA value was estimated accordingly for each genotype. In susceptible lentil genotypes (ILL 8063 and ILL 2581), BLRV was present in low concentrations in the growing point 3 days after inoculation and in high concentrations in all parts of the plant after 6 days. By contrast, the virus was not detected in the highly resistant genotype (ILL 74) until 18 days after inoculation. In the faba bean genotypes studied, BLRV was detected in high concentrations in all parts of the highly susceptible genotype (Fiord) 1 week after inoculation but only after 3 weeks in resistant genotypes (e.g. BPL 5274), but was not detected in the highly resistant genotypes (BPL 5278 and BPL 5279) 5 weeks after inoculation. The replication and systemic movement of BLRV was thus slower in resistant genotypes than in susceptible genotypes. Moreover, the use of TBIA scores clearly and easily differentiated resistant and susceptible genotypes. Our results suggest that BLRV movement and multiplication can be useful criteria when differentiating resistant from susceptible genotypes. In addition, undertaking the preliminary screening in a plastic house requires less space than direct planting in the field.  相似文献   

16.
The Natural Occurrence of Turnip Mosaic Potyvirus in Allium ampeloprasum   总被引:1,自引:0,他引:1  
A. Gera    D.-E. Lesemann    J. Cohen    A. Franck    S. Levy  R. Salomon 《Journal of Phytopathology》1997,145(7):289-293
An isolate of turnip mosaic potyvirus (TuMV) was obtained from Allium ampeloprasum grown in commercial greenhouses in Israel. Symptoms on infected plants include systemic chlorosis and yellow stripes, accompanied by growth reduction. Leaves were distorted, often showing necrotic flecking. The virus was readily transmitted mechanically, and in a non-persistent manner by aphids, among Allium, Chenopodium. Gomphrena and some Nicotiana spp. Purified preparations contained numerous filamentous particles similar to those observed in crude extracts of infected leaves. Particles from crude plant extracts had a normal length of 806 nm. Cells of infected plants contained cylindrical cytoplasmic inclusions with pinwheel, scrolls and laminated aggregates which indicated the presence of a potyvirus of Edwardson's subgroup III. and which resemble those of turnip mosaic virus (TuMV), The virus reacted strongly with antiserum to typical isolates of TuMV in immunoelectron microscopy and western blotting but not with antisera to several other potyviruses. Based on serological reactivity, electron microscopy, aphid transmission and cytopathology, the virus was identified as an isolate of TuMV.  相似文献   

17.
Studies were made of the relations of parsnip yellow fleck virus (PYFV) and its helper virus, anthriscus yellows (AYV), with their aphid vector, Cavariella aegopodii. Apterous insects were more efficient vectors than alates; apterous nymphs were as efficient as apterous adults. C. aegopodii never transmitted PYFV in the absence of AYV, but aphids carrying both viruses infected some test plants with one or other virus alone. C. aegopodii that fed first on a source of AYV and then on a source of PYFV transmitted both viruses to test plants, but aphids that fed on the sources in the reverse order transmitted only AYV. Test plants receiving some aphids from a source of AYV, and others from a source of PYFV, became infected only with AYV. C. aegopodii acquired AYV or the AYV/PYFV complex from plants in a minimum acquisition access time (AAT) of 10–15 mm and inoculated the viruses to test plants in a minimum inoculation access time (IAT) of 2 min. Increasing either AAT or IAT, or both, to 1 h or longer increased the frequency of transmission of each virus. Starving the insects before the acquisition feed on AYV or AYV/PFYV sources did not affect transmission. Aphids already carrying AYV acquired PYFV from plants in a minimum AAT of only 2 min; they acquired and inoculated PYFV in a minimum total time of 12 min. The data suggest that AYV is confined to deeply lying tissues whereas PYFV is distributed throughout the leaf. C. aegopodii transmitted both PYFV and AYV in a semi-persistent manner: the aphids retained both viruses for up to 4 days but lost them on moulting. Neither virus was passed to progeny of viruliferous adults. Earlier results suggesting that AYV is a persistent virus may have been caused by contamination of the AYV culture with carrot red leaf virus.  相似文献   

18.
Sitona lineatus and Apion vorax were the two most common species of weevil on field beans (Vicia faba minor) at Rothamsted between 1970 and 1974. In glasshouse tests, A. vorax was a much more efficient vector than 5. lineatus of broad bean stain virus (BBSV) and Echtes Ackerbohnenmosaik-Virus (EAMV), and both species transmitted EAMV more often than BBSV. Five other species of Apion transmitted the viruses infrequently or not at all. S. lineatus adults transmitted no more often after 8–16 days on infected plants than after 1–2 days. Some A. vorax adults transmitted EAMV, but not BBSV, after feeding on infected leaves for a few minutes. After 4 days on infected plants, A. vorax sometimes remained infective for the following 8 days. No A. vorax collected from woodland plants in spring was infective with BBSV or EAMV, but 4% from bean crops containing seed-borne infection carried BBSV and 17% carried EAMV. BBSV and EAMV were recovered from triturated weevils, but not from weevil haemolymph. Possibly the viruses are transmitted as contaminants of the mouthparts or by regurgitation during feeding, but A. vorax was observed to regurgitate only when anaesthetized. BBSV and EAMV were not transmitted by aphids (Aphis fabae and Acyrthosiphon pisum), nor by pollen beetles {Meligethes spp.). Field observations suggest that infected seed is the main source of BBSV and EAMV in spring-sown crops, and that crops grown from virus-free seed, and isolated from infected crops by 250–500 m, remain free of infection for most of the season.  相似文献   

19.
Combined infection of cowpea seedlings (c. v. ‘California Blackeye”) by cowpea mosaic virus (CPMV) and Fusarium oxysporum induced greater losses in leaf area, fresh and dry weights than infection by either pathogen alone. The growth of seedlings infected by F. oxysporum f. sp. tracheiphilum was less than that of comparable seedlings infected by F. oxysporum f. sp. phaseoli. The virus infectivity of extracts of the trifoliate leaves of dual-infected plants was significantly higher than that of comparable extracts from the leaves of plants singly infected with CPMV. The nature of the effects of multiple infection in cowpea is discussed.  相似文献   

20.
Enzyme-linked immunosorbent assay was used to measure the concentration of potato leafroll virus (PLRV) antigen in different parts of field-grown secondarily infected plants of three potato genotypes known to differ in resistance to infection. The antigen concentration in leaves of cv. Maris Piper (susceptible) was 10–30 times greater than that in cv. Pentland Crown or G 7445(1), a breeder's line (both resistant). Differences between genotypes in antigen concentration were smaller in petioles and tubers (5–10-fold) and in above-ground stems (about 4-fold), and were least in below-ground stems, stolons and roots (about 2-fold). PLRV antigen, detected by fluorescent antibody staining of tissue sections, was confined to phloem companion cells. In Pentland Crown, the decrease in PLRV antigen concentration in leaf mid-veins and petioles, relative to that in Maris Piper, was proportional to the decrease in number of PLRV-containing companion cells; this decrease was greater in the external phloem than in the internal phloem. The spread of PLRV infection within the phloem system seems to be impaired in the resistant genotypes. Green peach aphids (Myzuspersicae) acquired < 2800 pg PLRV/aphid when fed for 4 days on infected field-grown Maris Piper plants and < 58% of such aphids transmitted the virus to Physalis floridana test plants. In contrast, aphids fed on infected Pentland Crown plants acquired <120 pg PLRV/aphid and <3% transmitted the virus to P. floridana. The ease with which M. persicae acquired and transmitted PLRV from field-grown Maris Piper plants decreased greatly after the end of June without a proportionate drop in PLRV concentration. Spread of PLRV in potato crops should be substantially decreased by growing cultivars in which the virus multiplies to only a limited extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号